Skip to main content
Log in

Physio-Cognitive Decline Syndrome as the Phenotype and Treatment Target of Unhealthy Aging

  • Review
  • Published:
The journal of nutrition, health & aging

Abstract

In this era of unprecedented longevity, healthy aging is an important public health priority. Avoiding or shortening the period of disability or dementia before death is critical to achieving the defining objectives of healthy aging, namely to develop and maintain functional capabilities that enable wellbeing in older age. The first step is to identify people who are at risk and then to implement effective primary interventions. Geriatricians have identified a distinct clinical phenotype of concurrent physical frailty and cognitive impairment, which predicts high risk of incident dementia and disability and is potentially reversible. Differing operational definitions for this phenotype include “cognitive frailty”, “motoric cognitive risk syndrome” and the recently proposed “physiocognitive decline syndrome (PCDS)”. PCDS is defined as concurrent mobility impairment no disability (MIND: slow gait or/and weak handgrip) and cognitive impairment no dementia (CIND: ≥1.5 SD below the mean for age-, sex-, and education-matched norms in any cognitive domain but without dementia). By these criteria, PCDS has a prevalence of 10–15% among community-dwelling older persons without dementia or disability, who are at increased risk for incident disability (HR 3.9, 95% CI 3.0–5.1), incident dementia (HR 3.4, 95% CI 2.4–5.0) and all-cause mortality (HR 6.7, 95% CI 1.8–26.1). Moreover, PCDS is associated with characteristic neuroanatomic changes in the cerebellum and hippocampus, and their neurocircuitry, which are distinct from neuroimaging features in normal aging and common dementia syndromes. Basic research and longitudinal clinical studies also implicate a hypothetical muscle-brain axis in the pathoetiology of PCDS. Most important, community-dwelling elders with PCDS who participated in a multidomain intervention had significant improvements in global cognitive function, and especially in the subdomains of naming and concentration. Our proposed operational definition of PCDS successfully identifies an appreciable population of at-risk older people, establishes a distinct phenotype with an apparently unique pathoetiology, and is potentially reversible. We now need further studies to elucidate the pathophysiology of PCDS, to validate neuroimaging features and muscle-secreted microRNA biomarkers, and to evaluate the effectiveness of sustained multidomain interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. World Health Organization. Decade of healthy ageing: baseline report. World Health Organization, Geneva, Switzerland; 2021. https://cdn.who.int/media/docs/default-source/mca-documents/decade-of-healthy-ageing-baseline-report_06012021.pdf. Accessed 25 June 2021.

  2. World Health Organization. Integrated care for older people (ICOPE) implementation framework: guidance for systems and services. World Health Organization, Geneva, Switzerland; 2019. https://apps.who.int/iris/bitstream/handle/10665/325669/9789241515993-eng.pdf. Accessed 26 June 2021.

    Google Scholar 

  3. St John PD, Tyas SL, Menec V, Tate R. Multimorbidity, disability, and mortality in community-dwelling older adults. Can Fam Physician 2014;60:e272–e280

    PubMed  PubMed Central  Google Scholar 

  4. Landi F, Liperoti R, Russo A, Capoluongo E, Barillaro C, Pahor M, Bernabei R, Onder G. Disability, more than multimorbidity, was predictive of mortality among older persons aged 80 years and older. J Clin Epidemiol 2010;63:752–259. doi: https://doi.org/10.1016/j.jclinepi.2009.09.007

    Article  PubMed  Google Scholar 

  5. Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 2014;312:2551–2561. doi: https://doi.org/10.1001/jama.2014.13806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duara R, Loewenstein DA, Greig MT, Potter E, Barker W, Raj A, Schinka J, Borenstein A, Schoenberg M, Wu Y, Banko J, Potter H. Pre-MCI and MCI: neuropsychological, clinical, and imaging features and progression rates. Am J Geriatr Psychiatry 2011;19:951–960. doi: https://doi.org/10.1097/JGP.0b013e3182107c69

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chételat G, Dubois B, Dufouil C, Ellis KA, van der Flier WM, Glodzik L, van Harten AC, de Leon MJ, McHugh P, Mielke MM, Molinuevo JL, Mosconi L, Osorio RS, Perrotin A, Petersen RC, Rabin LA, Rami L, Reisberg B, Rentz DM, Sachdev PS, de la Sayette V, Saykin AJ, Scheltens P, Shulman MB, Slavin MJ, Sperling RA, Stewart R, Uspenskaya O, Vellas B, Visser PJ, Wagner M, Subjective Cognitive Decline Initiative (SCD-I) Working Group. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement 2014;10:844–852. doi: https://doi.org/10.1016/j.jalz.2014.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hedden T, Gabrieli JD. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 2004;5:87–96. doi: https://doi.org/10.1038/nrn1323

    Article  CAS  PubMed  Google Scholar 

  9. Morley JE. The New Geriatric Giants. Clin Geriatr Med 2017;33:xi–xii. doi: https://doi.org/10.1016/j.cger.2017.05.001

    Article  PubMed  Google Scholar 

  10. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001;56:M146–M156. doi: https://doi.org/10.1093/gerona/56.3.m146

    Article  CAS  PubMed  Google Scholar 

  11. Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, Cesari M, Chumlea WC, Doehner W, Evans J, Fried LP, Guralnik JM, Katz PR, Malmstrom TK, McCarter RJ, Gutierrez Robledo LM, Rockwood K, von Haehling S, Vandewoude MF, Walston J. Frailty consensus: a call to action. J Am Med Dir Assoc 2013;14:392–397. doi: https://doi.org/10.1016/j.jamda.2013.03.022

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dent E, Lien C, Lim WS, Wong WC, Wong CH, Ng TP, Woo J, Dong B, de la Vega S, Hua Poi PJ, Kamaruzzaman SBB, Won C, Chen LK, Rockwood K, Arai H, Rodriguez-Mañas L, Cao L, Cesari M, Chan P, Leung E, Landi F, Fried LP, Morley JE, Vellas B, Flicker L. The Asia-Pacific Clinical Practice Guidelines for the Management of Frailty. J Am Med Dir Assoc 2017;18:564–575. doi: https://doi.org/10.1016/j.jamda.2017.04.018

    Article  PubMed  Google Scholar 

  13. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7:270–279. doi: https://doi.org/10.1016/j.jalz.2011.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  14. Panza F, Lozupone M, Solfrizzi V, Sardone R, Dibello V, Di Lena L, D’Urso F, Stallone R, Petruzzi M, Giannelli G, Quaranta N, Bellomo A, Greco A, Daniele A, Seripa D, Logroscino G. Different Cognitive Frailty Models and Health- and Cognitive-related Outcomes in Older Age: From Epidemiology to Prevention. J Alzheimers Dis 2018;62:993–1012. doi: https://doi.org/10.3233/JAD-170963

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, Der G, Gale CR, Inskip HM, Jagger C, Kirkwood TB, Lawlor DA, Robinson SM, Starr JM, Steptoe A, Tilling K, Kuh D, Cooper C, Sayer AA. Grip strength across the life course: normative data from twelve British studies. PLoS One 2014;9:e113637. doi: https://doi.org/10.1371/journal.pone.0113637

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bohannon RW, Williams Andrews A. Normal walking speed: a descriptive meta-analysis. Physiotherapy 2011;97:182–189. doi: https://doi.org/10.1016/j.physio.2010.12.004

    Article  PubMed  Google Scholar 

  17. Robertson DA, Savva GM, Kenny RA. Frailty and cognitive impairment—a review of the evidence and causal mechanisms. Ageing Res Rev 2013;12:840–851. doi: https://doi.org/10.1016/j.arr.2013.06.004

    Article  PubMed  Google Scholar 

  18. Panza F, Solfrizzi V, Barulli MR, Santamato A, Seripa D, Pilotto A, Logroscino G. Cognitive Frailty: A Systematic Review of Epidemiological and Neurobiological Evidence of an Age-Related Clinical Condition. Rejuvenation Res 2015;18:389–412. doi: https://doi.org/10.1089/rej.2014.1637

    Article  PubMed  Google Scholar 

  19. Kojima G, Taniguchi Y, Iliffe S, Walters K. Frailty as a Predictor of Alzheimer Disease, Vascular Dementia, and All Dementia Among Community-Dwelling Older People: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc 2016;17:881–888. doi: https://doi.org/10.1016/j.jamda.2016.05.013

    Article  PubMed  Google Scholar 

  20. Zheng L, Li G, Gao D, Wang S, Meng X, Wang C, Yuan H, Chen L. Cognitive frailty as a predictor of dementia among older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr 2020;87:103997. doi: https://doi.org/10.1016/j.archger.2019.103997

    Article  PubMed  Google Scholar 

  21. Chen LK, Arai H. Physio-cognitive decline as the accelerated aging phenotype. Arch Gerontol Geriatr 2020;88:104051. doi: https://doi.org/10.1016/j.archger.2020.104051

    Article  PubMed  Google Scholar 

  22. Kelaiditi E, Cesari M, Canevelli M, van Kan GA, Ousset PJ, Gillette-Guyonnet S, Ritz P, Duveau F, Soto ME, Provencher V, Nourhashemi F, Salvà A, Robert P, Andrieu S, Rolland Y, Touchon J, Fitten JL, Vellas B, IANA/IAGG. Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J Nutr Health Aging 2013;17:726–734. doi: https://doi.org/10.1007/s12603-013-0367-2

    Article  CAS  PubMed  Google Scholar 

  23. Canevelli M, Cesari M. Cognitive Frailty: Far from Clinical and Research Adoption. J Am Med Dir Assoc 2017;18:816–818. doi: https://doi.org/10.1016/j.jamda.2017.07.004

    Article  PubMed  Google Scholar 

  24. Lee WJ, Peng LN, Liang CK, Loh CH, Chen LK. Cognitive frailty predicting all-cause mortality among community-living older adults in Taiwan: A 4-year nationwide population-based cohort study. PLoS One 2018;13:e0200447. doi: https://doi.org/10.1371/journal.pone.0200447

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ruan Q, Yu Z, Chen M, Bao Z, Li J, He W. Cognitive frailty, a novel target for the prevention of elderly dependency. Ageing Res Rev 2015;20:1–10. doi: https://doi.org/10.1016/j.arr.2014.12.004

    Article  PubMed  Google Scholar 

  26. Mushlin AI, Ruchlin HS, Callahan MA. Costeffectiveness of diagnostic tests. Lancet 2001;358:1353–1355. doi: https://doi.org/10.1016/S0140-6736(01)06417-0

    Article  CAS  PubMed  Google Scholar 

  27. Waite LM, Grayson DA, Piguet O, Creasey H, Bennett HP, Broe GA. Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney Older Persons Study. J Neurol Sci 2005;229–230:89–93. doi: https://doi.org/10.1016/j.jns.2004.11.009

    Article  PubMed  Google Scholar 

  28. Buracchio T, Dodge HH, Howieson D, Wasserman D, Kaye J. The trajectory of gait speed preceding mild cognitive impairment. Arch Neurol 2010;67:980–986. doi: https://doi.org/10.1001/archneurol.2010.159

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mielke MM, Roberts RO, Savica R, Cha R, Drubach DI, Christianson T, Pankratz VS, Geda YE, Machulda MM, Ivnik RJ, Knopman DS, Boeve BF, Rocca WA, Petersen RC. Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the Mayo Clinic Study of Aging. J Gerontol A Biol Sci Med Sci 2013;68:929–937. doi: https://doi.org/10.1093/gerona/gls256

    Article  PubMed  Google Scholar 

  30. Camicioli R, Howieson D, Oken B, Sexton G, Kaye J. Motor slowing precedes cognitive impairment in the oldest old. Neurology 1998;50:1496–1498. doi: https://doi.org/10.1212/wnl.50.5.1496

    Article  CAS  PubMed  Google Scholar 

  31. Huang ST, Tange C, Otsuka R, Nishita Y, Peng LN, Hsiao FY, Tomida M, Shimokata H, Arai H, Chen LK. Subtypes of physical frailty and their long-term outcomes: a longitudinal cohort study. J Cachexia Sarcopenia Muscle 2020;11:1223–1231. doi: https://doi.org/10.1002/jcsm.12577

    Article  PubMed  PubMed Central  Google Scholar 

  32. Verghese J, Annweiler C, Ayers E, Barzilai N, Beauchet O, Bennett DA, Bridenbaugh SA, Buchman AS, Callisaya ML, Camicioli R, Capistrant B, Chatterji S, De Cock AM, Ferrucci L, Giladi N, Guralnik JM, Hausdorff JM, Holtzer R, Kim KW, Kowal P, Kressig RW, Lim JY, Lord S, Meguro K, Montero-Odasso M, Muir-Hunter SW, Noone ML, Rochester L, Srikanth V, Wang C. Motoric cognitive risk syndrome: multicountry prevalence and dementia risk. Neurology 2014;83:718–726. doi: https://doi.org/10.1212/WNL.0000000000000717

    Article  PubMed  PubMed Central  Google Scholar 

  33. Meiner Z, Ayers E, Verghese J. Motoric Cognitive Risk Syndrome: A Risk Factor for Cognitive Impairment and Dementia in Different Populations. Ann Geriatr Med Res 2020;24:3–14. doi: https://doi.org/10.4235/agmr.20.0001

    Article  PubMed  PubMed Central  Google Scholar 

  34. Semba RD, Tian Q, Carlson MC, Xue QL, Ferrucci L. Motoric cognitive risk syndrome: Integration of two early harbingers of dementia in older adults. Ageing Res Rev 2020;58:101022. doi:https://doi.org/10.1016/j.arr.2020.101022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jackson JD, Rentz DM, Aghjayan SL, Buckley RF, Meneide TF, Sperling RA, Amariglio RE. Subjective cognitive concerns are associated with objective memory performance in Caucasian but not African-American persons. Age Ageing 2017;46:988–993. doi: https://doi.org/10.1093/ageing/afx077

    Article  PubMed  PubMed Central  Google Scholar 

  36. Röhr S, Pabst A, Riedel-Heller SG, Jessen F, Turana Y, Handajani YS, Brayne C, Matthews FE, Stephan BCM, Lipton RB, Katz MJ, Wang C, Guerchet M, Preux PM, Mbelesso P, Ritchie K, Ancelin ML, Carrière I, Guaita A, Davin A, Vaccaro R, Kim KW, Han JW, Suh SW, Shahar S, Din NC, Vanoh D, van Boxtel M, Köhler S, Ganguli M, Jacobsen EP, Snitz BE, Anstey KJ, Cherbuin N, Kumagai S, Chen S, Narazaki K, Ng TP, Gao Q, Gwee X, Brodaty H, Kochan NA, Trollor J, Lobo A, López-Antón R, Santabárbara J, Crawford JD, Lipnicki DM, Sachdev PS, for Cohort Studies of Memory in an International Consortium (COSMIC). Estimating prevalence of subjective cognitive decline in and across international cohort studies of aging: a COSMIC study. Alzheimers Res Ther 2020;12:167. doi: https://doi.org/10.1186/s13195-020-00734-y

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burmester B, Leathem J, Merrick P. Subjective Cognitive Complaints and Objective Cognitive Function in Aging: A Systematic Review and Meta-Analysis of Recent Cross-Sectional Findings. Neuropsychol Rev 2016;26:376–393. doi: https://doi.org/10.1007/s11065-016-9332-2

    Article  PubMed  Google Scholar 

  38. Rodríguez D, Ayers E, Weiss EF, Verghese J. Cross-Cultural Comparisons of Subjective Cognitive Complaints in a Diverse Primary Care Population. J Alzheimers Dis 2021;81:545–555. doi: https://doi.org/10.3233/JAD-201399

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nelson A, Gavelin HM, Boraxbekk CJ, Eskilsson T, Josefsson M, Slunga Järvholm L, Neely AS. Subjective cognitive complaints in patients with stress-related exhaustion disorder: a cross sectional study. BMC Psychol 2021;9:84. doi: https://doi.org/10.1186/s40359-021-00576-9

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kliegel M, Zimprich D, Eschen A. What do subjective cognitive complaints in persons with aging-associated cognitive decline reflect? Int Psychogeriatr 2005;17:499–512. doi: https://doi.org/10.1017/s1041610205001638

    Article  PubMed  Google Scholar 

  41. Luo X, Zhu Y, Lu D, Zong K, Lin X. Subjective cognitive dysfunction in patients with bipolar disorder: The prevalence, related factors and effects on predicting psychosocial functioning and suicidal ideation. Psychiatry Res 2020;284:112669. doi: https://doi.org/10.1016/j.psychres.2019.112669

    Article  PubMed  Google Scholar 

  42. Rasouli O, Gotaas ME, Stensdotter A-K, Skovlund E, Landrø NI, Dåstøl P, Fors EA. Neuropsychological dysfunction in chronic fatigue syndrome and the relation between objective and subjective findings. Neuropsychology 2019;33:658–669. doi: https://doi.org/10.1037/neu0000550

    Article  PubMed  Google Scholar 

  43. Lee SH, Kang Y, Cho SJ. Subjective cognitive decline in patients with migraine and its relationship with depression, anxiety, and sleep quality. J Headache Pain 2017;18:77. doi: https://doi.org/10.1186/s10194-017-0779-1

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gelonch O, Garolera M, Valls J, Rosselló L, Pifarré J. Executive function in fibromyalgia: comparing subjective and objective measures. Compr Psychiatry 2016;66:113–122. doi: https://doi.org/10.1016/j.comppsych.2016.01.002

    Article  PubMed  Google Scholar 

  45. Jacob L, Haro JM, Koyanagi A. Physical multimorbidity and subjective cognitive complaints among adults in the United Kingdom: a cross-sectional community-based study. Sci Rep 2019;9:12417. doi: https://doi.org/10.1038/s41598-019-48894-8

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xie B, Larson JL, Gonzalez R, Pressler SJ, Lustig C, Arslanian-Engoren C. Components and Indicators of Frailty Measures: A Literature Review. J Frailty Aging 2017;6:76–82. doi: https://doi.org/10.14283/jfa.2017.11

    CAS  PubMed  Google Scholar 

  47. Sargent L, Brown R. Assessing the Current State of Cognitive Frailty: Measurement Properties. J Nutr Health Aging 2017;21:152–160. doi: https://doi.org/10.1007/s12603-016-0735-9

    Article  CAS  PubMed  Google Scholar 

  48. Liu LK, Guo CY, Lee WJ, Chen LY, Hwang AC, Lin MH, Peng LN, Chen LK, Liang KY. Subtypes of physical frailty: Latent class analysis and associations with clinical characteristics and outcomes. Sci Rep 2017;7:46417. doi: https://doi.org/10.1038/srep46417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimokata H, Ando F, Niino N. A new comprehensive study on aging—the National Institute for Longevity Sciences, Longitudinal Study of Aging (NILS-LSA). J Epidemiol 2000;10(1 Suppl):S1–S9. doi: https://doi.org/10.2188/jea.10.1sup_1

    Article  CAS  PubMed  Google Scholar 

  50. Delrieu J, Andrieu S, Pahor M, Cantet C, Cesari M, Ousset PJ, Voisin T, Fougère B, Gillette S, Carrie I, Vellas B. Neuropsychological Profile of “Cognitive Frailty” Subjects in MAPT Study. J Prev Alzheimers Dis 2016;3:151–159. doi: https://doi.org/10.14283/jpad.2016.94

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu YH, Liu LK, Chen WT, Lee WJ, Peng LN, Wang PN, Chen LK. Cognitive Function in Individuals With Physical Frailty but Without Dementia or Cognitive Complaints: Results From the I-Lan Longitudinal Aging Study. J Am Med Dir Assoc 2015;16:899.e9–e16. doi: https://doi.org/10.1016/j.jamda.2015.07.013

    Article  Google Scholar 

  52. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc 2020;21:300–307.e2. doi: https://doi.org/10.1016/j.jamda.2019.12.012

    Article  PubMed  Google Scholar 

  53. Liu LK, Chen CH, Lee WJ, Wu YH, Hwang AC, Lin MH, Shimada H, Peng LN, Loh CH, Arai H, Chen LK. Cognitive Frailty and Its Association with All-Cause Mortality Among Community-Dwelling Older Adults in Taiwan: Results from I-Lan Longitudinal Aging Study. Rejuvenation Res 2018;21:510–517. doi: https://doi.org/10.1089/rej.2017.2038

    Article  PubMed  Google Scholar 

  54. Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, Anan Y, Uemura K, Ito T, Lee S, Park H, Suzuki T. Combined prevalence of frailty and mild cognitive impairment in a population of elderly Japanese people. J Am Med Dir Assoc 2013;14:518–524. doi: https://doi.org/10.1016/j.jamda.2013.03.010

    Article  PubMed  Google Scholar 

  55. Shimada H, Doi T, Lee S, Makizako H, Chen LK, Arai H. Cognitive Frailty Predicts Incident Dementia among Community-Dwelling Older People. J Clin Med 2018;7:250. doi: https://doi.org/10.3390/jcm7090250

    Article  PubMed Central  Google Scholar 

  56. Tsutsumimoto K, Doi T, Nakakubo S, Kim M, Kurita S, Ishii H, Shimada H. Cognitive Frailty as a Risk Factor for Incident Disability During Late Life: A 24-Month Follow-Up Longitudinal Study. J Nutr Health Aging 2020;24:494–499. doi: https://doi.org/10.1007/s12603-020-1365-9

    Article  CAS  PubMed  Google Scholar 

  57. Zheng L, Li G, Gao D, Wang S, Meng X, Wang C, Yuan H, Chen L. Cognitive frailty as a predictor of dementia among older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr 2020;87:103997. doi: https://doi.org/10.1016/j.archger.2019.103997

    Article  PubMed  Google Scholar 

  58. Panza F, Solfrizzi V, Barulli MR, Santamato A, Seripa D, Pilotto A, Logroscino G. Cognitive Frailty: A Systematic Review of Epidemiological and Neurobiological Evidence of an Age-Related Clinical Condition. Rejuvenation Res 2015;18:389–412. doi: https://doi.org/10.1089/rej.2014.1637

    Article  PubMed  Google Scholar 

  59. Kojima G, Taniguchi Y, Iliffe S, Walters K. Frailty as a Predictor of Alzheimer Disease, Vascular Dementia, and All Dementia Among Community-Dwelling Older People: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc 2016;17:881–888. doi: https://doi.org/10.1016/j.jamda.2016.05.013

    Article  PubMed  Google Scholar 

  60. Wallace LMK, Theou O, Darvesh S, Bennett DA, Buchman AS, Andrew MK, Kirkland SA, Fisk JD, Rockwood K. Neuropathologic burden and the degree of frailty in relation to global cognition and dementia. Neurology 2020;95:e3269–e3279. doi: https://doi.org/10.1212/WNL.0000000000010944

    Article  CAS  PubMed  Google Scholar 

  61. Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 2010;21:187–221. doi: https://doi.org/10.1515/revneuro.2010.21.3.187

    Article  PubMed  Google Scholar 

  62. Kramer JH, Mungas D, Reed BR, Wetzel ME, Burnett MM, Miller BL, Weiner MW, Chui HC. Longitudinal MRI and cognitive change in healthy elderly. Neuropsychology 2007;21:412–418. doi: https://doi.org/10.1037/0894-4105.21.4.412

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mungas D, Harvey D, Reed BR, Jagust WJ, DeCarli C, Beckett L, Mack WJ, Kramer JH, Weiner MW, Schuff N, Chui HC. Longitudinal volumetric MRI change and rate of cognitive decline. Neurology 2005;65:565–571. doi: https://doi.org/10.1212/01.wnl.0000172913.88973.0d

    Article  CAS  PubMed  Google Scholar 

  64. Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, Mattay VS. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging 2012;33:617.e1–617.e9. doi: https://doi.org/10.1016/j.neurobiolaging.2010.07.013

    Article  Google Scholar 

  65. Fjell AM, Westlye LT, Grydeland H, Amlien I, Espeseth T, Reinvang I, Raz N, Holland D, Dale AM, Walhovd KB, Alzheimer Disease Neuroimaging Initiative. Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiol Aging 2013;34:2239–2247. doi: https://doi.org/10.1016/j.neurobiolaging.2013.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tamnes CK, Walhovd KB, Dale AM, Østby Y, Grydeland H, Richardson G, Westlye LT, Roddey JC, Hagler Jr DJ, Due-Tønnessen P, Holland D, Fjell AM, Alzheimer’s Disease Neuroimaging Initiative. Brain development and aging: overlapping and unique patterns of change. Neuroimage 2013;68:63–74. doi: https://doi.org/10.1016/j.neuroimage.2012.11.039

    Article  PubMed  Google Scholar 

  67. Chen WT, Chou KH, Liu LK, Lee PL, Lee WJ, Chen LK, Wang PN, Lin CP. Reduced cerebellar gray matter is a neural signature of physical frailty. Hum Brain Mapp 2015;36:3666–3676. doi: https://doi.org/10.1002/hbm.22870

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liu LK, Chou KH, Hsu CCH, Peng LN, Lee WJ, Chen WT, Lin CP, Chung CP, Wang PN, Chen LK. Cerebellar-limbic neurocircuit is the novel biosignature of physio-cognitive decline syndrome. Aging (Albany NY) 2020;12:25319–25336. doi: https://doi.org/10.18632/aging.104135

    Article  CAS  PubMed Central  Google Scholar 

  69. Nishita Y, Nakamura A, Kato T, Otsuka R, Iwata K, Tange C, Ando F, Ito K, Shimokata H, Arai H. Links Between Physical Frailty and Regional Gray Matter Volumes in Older Adults: A Voxel-Based Morphometry Study. J Am Med Dir Assoc 2019;20:1587–1592.e7. doi: https://doi.org/10.1016/j.jamda.2019.09.001

    Article  PubMed  Google Scholar 

  70. Beauchet O, Allali G, Annweiler C, Verghese J. Association of Motoric Cognitive Risk Syndrome With Brain Volumes: Results From the GAIT Study. J Gerontol A Biol Sci Med Sci 2016;71:1081–1088. doi:https://doi.org/10.1093/gerona/glw012

    Article  PubMed  Google Scholar 

  71. Blumen HM, Allali G, Beauchet O, Lipton RB, Verghese J. A Gray Matter Volume Covariance Network Associated with the Motoric Cognitive Risk Syndrome: A Multicohort MRI Study. J Gerontol A Biol Sci Med Sci 2019;74(6):884–889. doi:https://doi.org/10.1093/gerona/gly158

    Article  PubMed  Google Scholar 

  72. la Fougere C, Zwergal A, Rominger A, et al. Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison. Neuroimage 2010;50:1589–1598. doi:https://doi.org/10.1016/j.neuroimage.2009.12.060

    Article  PubMed  Google Scholar 

  73. Zwergal A, Linn J, Xiong G, Brandt T, Strupp M, Jahn K. Aging of human supraspinal locomotor and postural control in fMRI. Neurobiol Aging 2012;33:1073–1084. doi:https://doi.org/10.1016/j.neurobiolaging.2010.09.022

    Article  PubMed  Google Scholar 

  74. Leisman G, Moustafa AA, Shafir T. Thinking, walking, talking: integratory motor and cognitive brain function. Front Public Health 2016;4:94.doi:https://doi.org/10.3389/fpubh.2016.00094

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lockhart SN, DeCarli C. Structural imaging measures of brain aging. Neuropsychol Rev 2014;24:271–289. doi:https://doi.org/10.1007/s11065-014-9268-3

    Article  PubMed  PubMed Central  Google Scholar 

  76. Flanders, M. Voluntary Movement. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg; 2009. pp 4371–4375. doi: https://doi.org/10.1007/978-3-540-29678-2_6413

    Chapter  Google Scholar 

  77. Windhorst U. Muscle proprioceptive feedback and spinal networks. Brain Res Bull 2007;73:155–202. doi: https://doi.org/10.1016/j.brainresbull.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  78. Prakash RS, Voss MW, Erickson KI, Kramer AF. Physical activity and cognitive vitality. Annu Rev Psychol 2015;66:769–797. doi: https://doi.org/10.1146/annurevpsych-010814-015249

    Article  PubMed  Google Scholar 

  79. Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med 2018;52:154–160. doi: https://doi.org/10.1136/bjsports-2016-096587

    Article  PubMed  Google Scholar 

  80. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012;481:463–168. doi: https://doi.org/10.1038/nature10777

    Article  PubMed  PubMed Central  Google Scholar 

  81. Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E, van Praag H. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function. Cell Metab 2016;24:332–340. doi: https://doi.org/10.1016/j.cmet.2016.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pedersen BK. Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol 2019;15:383–392. doi: https://doi.org/10.1038/s41574-019-0174-x

    Article  PubMed  Google Scholar 

  83. Siparsky PN, Kirkendall DT, Garrett Jr WE. Muscle changes in aging: understanding sarcopenia. Sports Health 2014;6:36–40. doi: https://doi.org/10.1177/1941738113502296

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lee WJ, Liu LK, Peng LN, Lin MH, Chen LK, ILAS Research Group. Comparisons of sarcopenia defined by IWGS and EWGSOP criteria among older people: results from the I-Lan longitudinal aging study. J Am Med Dir Assoc 2013;14:528.e1–528.e7. doi: https://doi.org/10.1016/j.jamda.2013.03.019

    Article  Google Scholar 

  85. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019;99:427–511. doi: https://doi.org/10.1152/physrev.00061.2017

    Article  PubMed  Google Scholar 

  86. Mijnarends DM, Schols JMGA, Meijers JMM, Tan FES, Verlaan S, Luiking YC, Morley JE, Halfens RJ. Instruments to assess sarcopenia and physical frailty in older people living in a community (care) setting: similarities and discrepancies. J Am Med Dir Assoc 2015;16:301–308. doi: https://doi.org/10.1016/j.jamda.2014.11.011

    Article  PubMed  Google Scholar 

  87. Frisoli Jr A, Chaves PH, Ingham SJ, Fried LP. Severe osteopenia and osteoporosis, sarcopenia, and frailty status in community-dwelling older women: results from the Women’s Health and Aging Study (WHAS) II. Bone 2011;48:952–957. doi: https://doi.org/10.1016/j.bone.2010.12.025

    Article  PubMed  Google Scholar 

  88. Gingrich A, Volkert D, Kiesswetter E, Thomanek M, Bach S, Sieber CC, Zopf Y. Prevalence and overlap of sarcopenia, frailty, cachexia and malnutrition in older medical inpatients. BMC Geriatr 2019;19:120. doi: https://doi.org/10.1186/s12877-019-1115-1

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chang KV, Hsu TH, Wu WT, Huang KC, Han DS. Association Between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc 2016;17:1164.e7–1164.e15. doi: https://doi.org/10.1016/j.jamda.2016.09.013

    Article  Google Scholar 

  90. Lauretani F, Longobucco Y, Ferrari Pellegrini F, De Iorio AM, Fazio C, Federici R, Gallini E, La Porta U, Ravazzoni G, Roberti MF, Salvi M, Zucchini I, Pelà G, Maggio M. Comprehensive Model for Physical and Cognitive Frailty: Current Organization and Unmet Needs. Front Psychol 2020;11:569629. doi: https://doi.org/10.3389/fpsyg.2020.569629

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ma L, Chan P. Understanding the Physiological Links Between Physical Frailty and Cognitive Decline. Aging Dis 2020;11:405–418. doi: https://doi.org/10.14336/AD.2019.0521

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yang CP, Yang WS, Wong YH, Wang KH, Teng YC, Chang MH, Liao KH, Nian FS, Chao CC, Tsai JW, Hwang WL, Lin MW, Tzeng TY, Wang PN, Campbell M, Chen LK, Tsai TF, Chang PC, Kung HJ. Muscle atrophy-related myotube-derived exosomal microRNA in neuronal dysfunction: Targeting both coding and long noncoding RNAs. Aging Cell 2020;19:e13107. doi: https://doi.org/10.1111/acel.13107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Scisciola L, Fontanella RA, Surina, Cataldo V, Paolisso G, Barbieri M. Sarcopenia and Cognitive Function: Role of Myokines in Muscle Brain Cross-Talk. Life (Basel) 2021;11:173. doi: https://doi.org/10.3390/life11020173

    CAS  Google Scholar 

  94. Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, Bäckman L, Hänninen T, Jula A, Laatikainen T, Lindström J, Mangialasche F, Paajanen T, Pajala S, Peltonen M, Rauramaa R, Stigsdotter-Neely A, Strandberg T, Tuomilehto J, Soininen H, Kivipelto M. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 2015;385:2255–2263. doi: https://doi.org/10.1016/S0140-6736(15)60461-5

    Article  PubMed  Google Scholar 

  95. Chen LK, Hwang AC, Lee WJ, Peng LN, Lin MH, Neil DL, Shih SF, Loh CH, Chiou ST, Taiwan Health Promotion Intervention Study for Elders research group. Efficacy of multidomain interventions to improve physical frailty, depression and cognition: data from cluster-randomized controlled trials. J Cachexia Sarcopenia Muscle 2020;11:650–662. doi: https://doi.org/10.1002/jcsm.12534

    Article  PubMed  PubMed Central  Google Scholar 

  96. Liang CK, Lee WJ, Hwang AC, Lin CS, Chou MY, Peng LN, Lin MH, Chen LK. Efficacy of Multidomain Intervention Against Physio-cognitive Decline Syndrome: A Cluster-randomized Trial. Arch Gerontol Geriatr 2021;95:104392. doi: https://doi.org/10.1016/j.archger.2021.104392

    Article  PubMed  Google Scholar 

  97. Merchant RA, Chan YH, Hui RJY, Tsoi CT, Kwek SC, Tan WM, Lim JY, Sandrasageran S, Wong BLL, Chen MZ, Ng SE, Morley JE. Motoric cognitive risk syndrome, physio-cognitive decline syndrome, cognitive frailty and reversibility with dual-task exercise. Exp Gerontol 2021;150:111362. doi: https://doi.org/10.1016/j.exger.2021.111362

    Article  PubMed  Google Scholar 

  98. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53:695–699. doi: https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  99. Makizako H, Shimada H, Park H, Doi T, Yoshida D, Uemura K, Tsutsumimoto K, Suzuki T. Evaluation of multidimensional neurocognitive function using a tablet personal computer: test-retest reliability and validity in community-dwelling older adults. Geriatr Gerontol Int 2013;13:860–866. doi: https://doi.org/10.1111/ggi.12014

    Article  PubMed  Google Scholar 

  100. Tseng SH, Liu LK, Peng LN, Wang PN, Loh CH, Chen LK. Development and Validation of a Tool to Screen for Cognitive Frailty among Community-Dwelling Elders. J Nutr Health Aging 2019;23:904–909. doi: https://doi.org/10.1007/s12603-019-1235-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

David Neil (PhD) of Dr. Word Ltd., Taiwan, provided professional editorial services, which were supported by funding from National Yang Ming Chiao Tung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Kung Chen.

Ethics declarations

Conflict of Interest: All authors have nothing to disclose.

Ethical standards: This study has been performed in accordance with the ethical standards established in the 1964 Declaration of Helsinki and later amendments. The study was supported by the Ministry of Science and Technology, Taiwan (MOST-110-2634-F-010-001; MOST-110-2321-B-010-007; MOST-110-2314-B-A49A-538)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, CP., Lee, WJ., Peng, LN. et al. Physio-Cognitive Decline Syndrome as the Phenotype and Treatment Target of Unhealthy Aging. J Nutr Health Aging 25, 1179–1189 (2021). https://doi.org/10.1007/s12603-021-1693-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-021-1693-4

Key words

Navigation