Skip to main content
Log in

Circulating Cytokines and Lower Body Muscle Performance in Older Adults at Hospital Admission

  • Published:
The journal of nutrition, health & aging

Abstract

Background

Aging-related traits, including gradual loss of skeletal muscle mass and chronic inflammation, are linked to altered body composition and impaired physical functionality, which are important contributing factors to the disabling process. We sought to explore the potential relationship between lower-body muscle strength decline and inflammatory mediators in older adults.

Methods

We performed a cross-sectional analysis in 38 older adults admitted to an acute care of the elderly unit (57.9% women, mean age=87.9±4.9 years; mean body mass index [BMI]=26.5±4.7 kg/m2). Clinical and functional outcomes including weight, height, BMI, dependence, physical and cognitive performance, and muscle strength measured by one-repetition maximum (1RM) for leg-extension, leg-press, chest-press and handgrip strength, were assessed. Blood serum content of 59 cytokines, chemokines and growth factors was assessed by protein arrays. Multivariate linear regression analyses were used to examine the relationship between cytokine concentrations and muscle strength parameters.

Results

After controlling for confounding factors (age, sex, BMI, cumulative illness rating score and physical performance score), 1RM leg-press had a significant negative relationship with GRO (CXCL2) (β= −18.13, p=0.049), MIG (CXCL9) (β= −13.94, p=0.004), IGF-1 (β= −19.63, p=0.003), CK-BETA 8 (CCL23) (β= −28.31, p=0.018) and GCP-2 (CXCL6) (β= −25.78, p=0.004). Likewise, 1RM leg-extension had a significant negative relationship with IGFBP-1 (β= −11.49, p=0.023).

Conclusions

Thus, several serum cytokines/chemokines and growth factors are negatively associated with lower muscle strength in older patients. Further investigation is required to elucidate the mechanism of elevated inflammatory mediators leading to lower muscle strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Müller L, Di Benedetto S, Pawelec G. The Immune System and Its Dysregulation with Aging. Subcell Biochem. 2019;91:21–43. doi:https://doi.org/10.1007/978-981-13-3681-2_2.

    PubMed  Google Scholar 

  2. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;1S(9):S0S–S22. doi:https://doi.org/10.1038/s41569-018-0064-2.

    Google Scholar 

  3. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front Immunol. 2018;9:S86. doi: https://doi.org/10.3389/fimmu.2018.00586.

    Google Scholar 

  4. Gill TM, Gahbauer EA, Han L, Allore HG. The role of intervening hospital admissions on trajectories of disability in the last year of life: prospective cohort study of older people. BMJ. 2015;350:h2361. doi:https://doi.org/10.1136/bmj.h2361.

    PubMed  PubMed Central  Google Scholar 

  5. Brown CJ, Redden DT, Flood KL, Allman RM. The underrecognized epidemic of low mobility during hospitalization of older adults. J Am Geriatr Soc. 2009;57(9): 1660–166S. doi:https://doi.org/10.1111/j.1532-5415.2009.02393.x.

    PubMed  Google Scholar 

  6. Gill TM, Allore HG, Gahbauer EA, Murphy TE. Change in disability after hospitalization or restricted activity in older persons. JAMA. 2010;304(17): 1919–1928. doi:https://doi.org/10.1001/jama.2010.1568.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Martínez-Velilla N, Herrero AC, Cadore EL, Sáez de Asteasu ML, Izquierdo M. Iatrogenic Nosocomial Disability Diagnosis and Prevention. J Am Med Dir Assoc. 2016;17(8):762–764. doi:https://doi.org/10.1016/j.jamda.2016.05.019.

    PubMed  Google Scholar 

  8. Drummond MJ, Timmerman KL, Markofski MM, et al. Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults. Am J Physiol Regul Integr Comp Physiol. 2013;305(3):R216–223. doi:https://doi.org/10.1152/ajpregu.00072.2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Reijnierse EM, Verlaan S, Pham VK, Lim WK, Meskers CGM, Maier AB. Lower Skeletal Muscle Mass at Admission Independently Predicts Falls and Mortality 3 Months Post-discharge in Hospitalized Older Patients. J Gerontol A Biol Sci Med Sci. 2019;74(10):1650–1656. doi:https://doi.org/10.1093/gerona/gly281.

    CAS  PubMed  Google Scholar 

  10. Celis-Morales CA, Lyall DM, Anderson J, et al. The association between physical activity and risk of mortality is modulated by grip strength and cardiorespiratory fitness: evidence from 498 135 UK-Biobank participants. Eur Heart J. 2017;38(2):116–122. doi:https://doi.org/10.1093/eurheartj/ehw249

    PubMed  Google Scholar 

  11. Ramírez-Vélez R, Pérez-Sousa MÁ, García-Hermoso A, Zambom-Ferraresi F, Martínez-Velilla N, Sáez de Asteasu ML, Cano-Gutiérrez CA, Rincón-Pabón D, Izquierdo M. Relative Handgrip Strength Diminishes the Negative Effects of Excess Adiposity on Dependence in Older Adults: A Moderation Analysis. J Clin Med. 2020 Apr 17;9(4):E1152. doi: https://doi.org/10.3390/jcm9041152.

    PubMed  Google Scholar 

  12. McGregor RA, Cameron-Smith D, Poppitt SD. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Heal. 2014;3(1):9. doi:https://doi.org/10.1186/2046-2395-3-9.

    Google Scholar 

  13. Marzetti E, Picea A, Marini F, Biancolillo A, Coelho-Junior HJ, Gervasoni J, Bossola M, Cesari M, Onder G, Landi F, Bernabei R, Calvani R. Inflammatory signatures in older persons with physical frailty and sarcopenia: The frailty “cytokinome” at its core. Exp Gerontol. 2019;122:129–138. doi: https://doi.org/10.1016/j.exger.2019.04.019.

    PubMed  Google Scholar 

  14. Hunter GR, Singh H, Carter SJ, Bryan DR, Fisher G. Sarcopenia and Its Implications for Metabolic Health. J Obes. 2019;2019:8031705. doi:https://doi.org/10.1155/2019/8031705.

    PubMed  PubMed Central  Google Scholar 

  15. Santos-Lozano A, Valenzuela PL, Llavero F, et al. Successful aging: insights from proteome analyses of healthy centenarians. Aging. 2020; 12(4):3502–3515. doi:https://doi.org/10.18632/aging.l02826.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94.

    CAS  PubMed  Google Scholar 

  17. Sáez de Asteasu ML, Martínez-Velilla N, Zambom-Ferraresi F, Casas-Herrero Á, Cadore EL, Ramirez-Velez R, Izquierdo M. Inter-individual variability in response to exercise intervention or usual care in hospitalized older adults. J Cachexia Sarcopenia Muscle. 2019 Dec;10(6): 1266–1275. doi: https://doi.org/10.1002/jcsm.12481.

    PubMed  PubMed Central  Google Scholar 

  18. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198. doi:https://doi.org/10.1016/0022-3956(75)90026-6.

    CAS  PubMed  Google Scholar 

  19. Martínez De La Iglesia J, Onís Vilches O, Dueñas Herrero R, et al. The Spanish version of the Yesavage abbreviated questionnaire (GDS) to screen depressive dysfunctions in patients older than 65 years: adaptation and validation [in Spanish]. MEDIFAM. 2002:12:620–630.

    Google Scholar 

  20. Shah S, Vanclay F, Cooper B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J Clin Epidemiol. 1989;42(8):703–709. doi:https://doi.org/10.1016/0895-4356(89)90065-6.

    CAS  PubMed  Google Scholar 

  21. Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016; 13(9):731–740. doi:https://doi.org/10.1038/nmeth.3901.

    CAS  PubMed  Google Scholar 

  22. González-Morales A, Lachén-Montes M, Fernandez-Irigoyen J, Santamaría E. Monitoring the Cerebrospinal Fluid Cytokine Profile Using Membrane-Based Antibody Arrays. In: Methods in molecular biology (Clifton, NJ). 2019. p. 233–46.

  23. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8(8): 1551–1566. doi:https://doi.org/10.1038/nprot.2013.092.

    PubMed  PubMed Central  Google Scholar 

  24. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental dataseis. Nucleic Acids Res. 2019 Jan 8;47(D1):D607–D613. doi: https://doi.org/10.1093/nar/gky1131.

    CAS  PubMed  Google Scholar 

  25. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W SG. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

    PubMed  PubMed Central  Google Scholar 

  26. Yang Y, Hao Q, Flaherty JH, et al. Comparison of procalcitonin, a potentially new inflammatory biomarker of frailty, to interleukin-6 and C-reactive protein among older Chinese hospitalized patients. Aging Clin Exp Res. 2018;30(12): 1459–1464. doi:https://doi.org/10.1007/s40520-018-0964-3.

    PubMed  Google Scholar 

  27. Kawada T. Inflammatory biomarkers and frailty among older hospitalized patients. Aging Clin Exp Res. 2019;31(5):739–740. doi:https://doi.org/10.1007/s40520-019-01167-w.

    PubMed  Google Scholar 

  28. Cesari M, Penninx BW, Pahor M, Lauretani F, Corsi AM, Rhys Williams G, et al. Inflammatory markers and physical performance in older persons: the InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2004;59:242–8.

    PubMed  Google Scholar 

  29. Brinkley TE, Leng X, Miller ME, Kitzman DW, Pahor M, Berry MJ, et al. Chronic inflammation is associated with low physical function in older adults across multiple comorbidities. J Gerontol A Biol Sci Med Sci. 2009;64:455–61.

    PubMed  Google Scholar 

  30. Michaud M, Balardy L, Moulis G, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013; 14(12):877–882. doi:https://doi.org/10.1016/j.jamda.2013.05.009.

    PubMed  Google Scholar 

  31. Miller RA. The aging immune system: primer and prospectus. Science. 1996;273(5271):70–74. doi:https://doi.org/10.1126/science.273.5271.70

    CAS  PubMed  Google Scholar 

  32. Shurin GV, Yurkovetsky ZR, Chatta GS, Tourkova IL, Shurin MR, Lokshin AE. Dynamic alteration of soluble serum biomarkers in healthy aging. Cytokine. 2007;39(2):123–129. doi:https://doi.org/10.1016/j.cyto.2007.06.006.

    CAS  PubMed  Google Scholar 

  33. Spindler J, Zandi S, Pfister IB, Gerhardt C, Garweg JG. Cytokine profiles in the aqueous humor and serum of patients with dry and treated wet age-related macular degeneration. PLoS ONE. 2018;13(8):e0203337. doi: https://doi.org/10.1371/journal.pone.0203337

    PubMed  PubMed Central  Google Scholar 

  34. Borzì RM, Mazzetti I, Marcu KB, Facchini A. Chemokines in cartilage degradation. Clin Orthop Relat Res. 2004;(427 Suppl):S53–S61. doi:https://doi.org/10.1097/01.blo.0000143805.64755.4f.

  35. Sayed N, Gao T, Tibshirani R, Hastie T, Cui L, Kuznetsova T, Rosenberg-Hasson Y, Ostan R, Monti D, Lehallier B, Shen-Orr S, Maecker HT, Dekker CL, Wyss-Coray T, Franceschi C, Jojic V, Haddad F, Montoya JG, Wu JC, Furman D. An Inflammatory Clock Predicts Multi-morbidity, Immunosenescence and Cardiovascular Aging in Humans. bioRxiv; 2019. doi: 10.1101/840363.

  36. Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes. 2011;60(4):1111–1121. doi:https://doi.org/10.2337/db10-1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Velloso CP. Regulation of muscle mass by growth hormone and IGF-1. Br J Pharmacol. 2008; 154(3):557–568.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ascenzi F, Barberi L, Dobrowolny G, Villa Nova Bacurau A, Nicoletti C, Rizzuto E, Rosenthal N, Scicchitano BM, Musarò A. Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell. 2019;18(3):e12954. doi: https://doi.org/10.1111/acel.12954.

    PubMed  PubMed Central  Google Scholar 

  39. Barclay RD, Burd NA, Tyler C, Tillin NA, Mackenzie RW. The Role of the IGF-1 Signaling Cascade in Muscle Protein Synthesis and Anabolic Resistance in Aging Skeletal Muscle. Front Nutr. 2019;6:146. doi: https://doi.org/10.3389/fnut.2019.00146.

    PubMed  PubMed Central  Google Scholar 

  40. Lang CH, Vary TC, Frost RA. Acute in vivo elevation of insulin-like growth factor (IGF) binding protein-1 decreases plasma free IGF-I and muscle protein synthesis. Endocrinology. 2003; 144(9):3922–3933. doi:https://doi.org/10.1210/en.2002-0192.

    CAS  PubMed  Google Scholar 

  41. Hall K, Hilding A, Thorén M. Determinants of circulating insulin-like growth factor-I. J Endocrinol Invest. 1999;22(5 Suppl):48–57. PMID: 10442571.

    CAS  PubMed  Google Scholar 

  42. Ostlund RE Jr, Yang JW, Klein S, Gingerich R. Relation between plasma leptin concentration and body fat, gender, diet, age, and metabolic covariates. J Clin Endocrinol Metab. 1996;81(11):3909–3913. doi:https://doi.org/10.1210/jcem.81.11.8923837.

    CAS  PubMed  Google Scholar 

  43. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5. doi: https://doi.org/10.1056/NEJM199602013340503.

    CAS  PubMed  Google Scholar 

  44. Baumgartner RN, Waters DL, Morley JE, Patrick P, Montoya GD, Garry PJ. Age-related changes in sex hormones affect the sex difference in serum leptin independently of changes in body fat. Metabolism. 1999;48(3):378–384. doi:https://doi.org/10.1016/s0026-0495(99)90089-6.

    CAS  PubMed  Google Scholar 

  45. Lund SA, Giachelli CM, Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009;3(3–4):311–322. doi:https://doi.org/10.1007/s12079-009-0068-0.

    PubMed  PubMed Central  Google Scholar 

  46. Chang IC, Chiang TI, Yeh KT, Lee H, Cheng YW. Increased serum osteopontin is a risk factor for osteoporosis in menopausal women. Osteoporos Int. 2010;21(8):1401–1409. doi: https://doi.org/10.1007/s00198-009-1107-7.

    CAS  PubMed  Google Scholar 

  47. Barlow JP, Solomon TP. Do skeletal muscle-secreted factors influence the function of pancreatic β-cells? Am J Physiol Endocrinol Metab. 2018;314(4):E297–E307. doi: https://doi.org/10.1152/ajpendo.00353.2017.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikel Izquierdo.

Ethics declarations

Approved by the local Research Ethics Committee (ID Pyto2018/7, N°264; IS May 2018)

Additional information

Conflict of interest

None declared.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Vélez, R., Sáez De Asteasu, M.L., Martínez-Velilla, N. et al. Circulating Cytokines and Lower Body Muscle Performance in Older Adults at Hospital Admission. J Nutr Health Aging 24, 1131–1139 (2020). https://doi.org/10.1007/s12603-020-1480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-020-1480-7

Key words

Navigation