Skip to main content
Log in

Defining the Optimal Target Population for Trials of Polyunsaturated Fatty Acid Supplementation Using the Erythrocyte Omega-3 Index: A Step Towards Personalized Prevention of Cognitive Decline?

  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

to identify the optimal erythrocyte omega-3 index cut-off for predicting cognitive decline and/or polyunsaturated fatty acid (PUFA) treatment response, in order to better define the target population for future dementia prevention trials.

Design & Setting

Secondary exploratory analysis of the randomized controlled MAPT prevention trial.

Participants

724 dementia-free subjects aged 70 or older with subjective memory complaints, limitations in one instrumental activity of daily living, and/or slow gait speed.

Intervention

800mg docosahexaenoic acid (DHA) and 225mg eicosapentaenoic acid (EPA) daily versus placebo.

Measurements

Erythrocyte omega-3 index was measured at baseline. Cognition was measured over 3 years with a composite cognitive score (mean of 4 z-scores).

Results

Placebo group subjects in the lowest quartile of baseline erythrocyte omega-3 index (i.e. ≤4.83%) underwent significantly more 3-year cognitive decline than the other quartiles (mean composite score difference 0.14, 95%CI [0.00, 0.28], p=0.048). In a ROC curve analysis, the optimal omega-3 index cut-off for predicting notable cognitive decline was 5.3%. There was a consistent but non-significant difference in 3-year cognitive decline of approximately 0.12 points between PUFA-treated and placebo subjects with “low” baseline omega-3 index when the cut-off was set at ≤5.27%.

Conclusions

Dementia-free older adults with an omega-3 index below approximately 5% are at increased risk of cognitive decline, and could be a good target population for testing the cognitive effects of PUFA supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Table 1
Table 2
Figure 4

Similar content being viewed by others

References

  1. Song C, Shieh CH, Wu YS, Kalueff A, Gaikwad S, Su KP. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer’s disease: Acting separately or synergistically? Prog Lipid Res. 2016;62:41–54.

    Article  PubMed  CAS  Google Scholar 

  2. Sydenham E, Dangour AD, Lim WS. Omega 3 fatty acid for the prevention of cognitive decline and dementia. Cochrane Database Syst Rev. 2012(6):CD005379.

    Google Scholar 

  3. Heude B, Ducimetiere P, Berr C. Cognitive decline and fatty acid composition of erythrocyte membranes—The EVA Study. Am J Clin Nutr. 2003;77(4):803–8.

    Article  PubMed  CAS  Google Scholar 

  4. Schaefer EJ, Bongard V, Beiser AS, et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol. 2006;63(11):1545–50.

    Article  PubMed  Google Scholar 

  5. Tan ZS, Harris WS, Beiser AS, et al. Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging. Neurology. 2012;78(9):658–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yassine HN, Feng Q, Azizkhanian I, et al. Association of Serum Docosahexaenoic Acid With Cerebral Amyloidosis. JAMA Neurol. 2016;73(10):1208–16.

    Article  PubMed  Google Scholar 

  7. Pottala JV, Yaffe K, Robinson JG, Espeland MA, Wallace R, Harris WS. Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMSMRI study. Neurology. 2014;82(5):435–42.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Andreeva VA, Kesse-Guyot E, Barberger-Gateau P, Fezeu L, Hercberg S, Galan P. Cognitive function after supplementation with B vitamins and long-chain omega-3 fatty acids: ancillary findings from the SU.FOL.OM3 randomized trial. Am J Clin Nutr. 2011;94(1):278–86.

    Article  PubMed  CAS  Google Scholar 

  9. Andrieu S, Guyonnet S, Coley N, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebocontrolled trial. Lancet Neurol. 2017;16(5):377–89.

    Article  PubMed  CAS  Google Scholar 

  10. Dangour AD, Allen E, Elbourne D, et al. Effect of 2-y n-3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind, controlled trial. Am J Clin Nutr. 2010;91(6):1725–32.

    Article  PubMed  CAS  Google Scholar 

  11. van de Rest O, Geleijnse JM, Kok FJ, et al. Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial. Neurology. 2008;71(6):430–8.

    Article  PubMed  CAS  Google Scholar 

  12. Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T, et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol. 2006;63(10):1402–8.

    Article  PubMed  Google Scholar 

  13. Quinn JF, Raman R, Thomas RG, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA. 2010;304(17):1903–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yurko-Mauro K, McCarthy D, Rom D, et al. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement. 2010;6(6):456–64.

    Article  PubMed  CAS  Google Scholar 

  15. Dangour AD, Andreeva VA, Sydenham E, Uauy R. Omega 3 fatty acids and cognitive health in older people. Br J Nutr. 2012;107 Suppl 2:S152–8.

    Article  PubMed  CAS  Google Scholar 

  16. Coley N, Andrieu S, Gardette V, et al. Dementia prevention: methodological explanations for inconsistent results. Epidemiol Rev. 2008;30:35–66.

    Article  PubMed  Google Scholar 

  17. Stonehouse W, Conlon CA, Podd J, et al. DHA supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. Am J Clin Nutr. 2013;97(5):1134–43.

    Article  PubMed  CAS  Google Scholar 

  18. Vellas B, Carrie I, Gillette-Guyonnet S, et al. Mapt Study: A Multidomain Approach for Preventing Alzheimer’s Disease: Design and Baseline Data. The Journal of Prevention of Alzheimer’s Disease. 2014;1(1):13–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.

    Article  PubMed  CAS  Google Scholar 

  20. Folstein MF, Folstein SE, McHugh PR. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research. 1975;12(3):189–98.

    PubMed  CAS  Google Scholar 

  21. Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of Illness in the Aged. The Index of Adl: A Standardized Measure of Biological and Psychosocial Function. JAMA. 1963;185:914–9.

    PubMed  CAS  Google Scholar 

  22. Grober E, Buschke H, Crystal H, Bang S, Dresner R. Screening for dementia by memory testing. Neurology. 1988;38(6):900–3.

    Article  PubMed  CAS  Google Scholar 

  23. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. The British Journal of Psychiatry: the journal of mental science. 1982;140:566–72.

    Article  CAS  Google Scholar 

  24. Wechsler D. Wechsler adult intelligence scale-revised. New York: Psychological Corp. 1981.

    Google Scholar 

  25. Guralnik JM, Ferrucci L, Pieper CF, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2000;55(4):M221–31.

    Article  PubMed  CAS  Google Scholar 

  26. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2004;59(3):255–63.

    Article  PubMed  Google Scholar 

  27. Yesavage JA, Brink TL, Rose TL, et al. Development and validation of a geriatric depression screening scale: a preliminary report. Journal of Psychiatric Research. 1982;17(1):37–49.

    Article  PubMed  Google Scholar 

  28. Coley N, Gallini A, Ousset PJ, Vellas B, Andrieu S, GuidAge study g. Evaluating the clinical relevance of a cognitive composite outcome measure: An analysis of 1414 participants from the 5-year GuidAge Alzheimer’s prevention trial. Alzheimers Dement. 2016;12(12):1216–25.

    Article  PubMed  Google Scholar 

  29. van Schoor NM, Comijs HC, Llewellyn DJ, Lips P. Cross-sectional and longitudinal associations between serum 25-hydroxyvitamin D and cognitive functioning. Int Psychogeriatr. 2016;28(5):759–68.

    Article  PubMed  Google Scholar 

  30. Nettiksimmons J, Ayonayon H, Harris T, et al. Development and validation of risk index for cognitive decline using blood-derived markers. Neurology. 2015;84(7):696–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–5.

    Article  PubMed  CAS  Google Scholar 

  32. Lukaschek K, von Schacky C, Kruse J, Ladwig KH. Cognitive Impairment Is Associated with a Low Omega-3 Index in the Elderly: Results from the KORA-Age Study. Dement Geriatr Cogn Disord. 2016;42(3-4):236–45.

    Article  PubMed  CAS  Google Scholar 

  33. Harris WS. The omega-3 index as a risk factor for coronary heart disease. Am J Clin Nutr. 2008;87(6):1997S–2002S.

    Article  PubMed  CAS  Google Scholar 

  34. Harris WS, Von Schacky C. The Omega-3 Index: a new risk factor for death from coronary heart disease? Prev Med. 2004;39(1):212–20.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, Chen J, Qiu J, Li Y, Wang J, Jiao J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr. 2016;103(2):330–40.

    Article  PubMed  CAS  Google Scholar 

  36. Abubakari AR, Naderali MM, Naderali EK. Omega-3 fatty acid supplementation and cognitive function: are smaller dosages more beneficial? Int J Gen Med. 2014;7:463–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Yurko-Mauro K, Alexander DD, Van Elswyk ME. Docosahexaenoic acid and adult memory: a systematic review and meta-analysis. PLoS One. 2015;10(3):e0120391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion related to the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA Journal. 2012;10(7):2815.

  39. Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res. 1997;38(10):2012–22.

    PubMed  CAS  Google Scholar 

  40. Harris WS, Sands SA, Windsor SL, et al. Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: correlation with erythrocytes and response to supplementation. Circulation. 2004;110(12):1645–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Nicola Coley.

Additional information

members are listed at the end of the manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coley, N., Raman, R., Donohue, M.C. et al. Defining the Optimal Target Population for Trials of Polyunsaturated Fatty Acid Supplementation Using the Erythrocyte Omega-3 Index: A Step Towards Personalized Prevention of Cognitive Decline?. J Nutr Health Aging 22, 982–988 (2018). https://doi.org/10.1007/s12603-018-1052-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-018-1052-2

Key words

Navigation