The journal of nutrition, health & aging

, Volume 22, Issue 2, pp 222–229 | Cite as

Association of long-term adherence to the mind diet with cognitive function and cognitive decline in American women

  • Agnes M. BerendsenEmail author
  • J. H. Kang
  • E. J. M. Feskens
  • C. P. G. M. de Groot
  • F. Grodstein
  • O. van de Rest



There is increasing attention for dietary patterns as a potential strategy to prevent cognitive decline. We examined the association between adherence to a recently developed Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet with cognitive function and cognitive decline, taking into account the interaction between the apolipoprotein E ε4 genotype and the MIND diet.


Population-based prospective cohort study.


A total of 16,058 older women aged 70 and over from the Nurses’ Health Study.


Dietary intake was assessed five times between 1984 and 1998 with a 116-item Food Frequency Questionnaire. The MIND score includes ten brain-healthy foods and five unhealthy foods. Cognition was assessed four times by telephone from 1995 to 2001 (baseline) with the Telephone Interview for Cognitive Status (TICS) and by calculating composite scores of verbal memory and global cognition. Linear regression modelling and linear mixed modelling were used to examine the associations of adherence to the MIND diet with average cognitive function and cognitive change over six years, respectively.


Greater long-term adherence to the MIND diet was associated with a better verbal memory score (multivariable-adjusted mean differences between extreme MIND quintiles=0.04 (95%CI 0.01-0.07), p-trend=0.006), but not with cognitive decline over 6 years in global cognition, verbal memory or TICS.


Long-term adherence to the MIND diet was moderately associated with better verbal memory in later life. Future studies should address this association within populations at greater risk of cognitive decline.

Key words

Cognition dietary pattern MIND Mediterranean DASH 


  1. 1.
    United Nations. Department of Economic and Social Affairs. Population Division. World Population Ageing 2013. 2013 Contract No.: ST/ESA/SER.A/348.Google Scholar
  2. 2.
    World Health Organization. 10 facts on ageing and the life course Geneva, Switzerland, 2012 [cited 2015 15-06-2015]. Available from: features/factfiles/ageing/ageing_facts/en/index3.html.Google Scholar
  3. 3.
    Nelson L, Tabet N. Slowing the progression of Alzheimer’s disease; what works? Ageing Res Rev. 2015;23:193–209.CrossRefPubMedGoogle Scholar
  4. 4.
    van de Rest O, Berendsen AM, Haveman-Nies A, de Groot CPGM. Dietary patterns, cognitive decline, and dementia: a systematic review. Adv Nutr. 2015;6(2):154–68.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Smith PJ, Blumenthal JA, Babyak MA, Craighead L, Welsh-Bohmer KA, Browndyke JN, et al. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension. 2010;55(6):1331–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tangney CC, Li H, Wang Y, Barnes L, Schneider JA, Bennett DA, et al. Relation of DASH-and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology. 2014;83(16):1410–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wengreen H, Munger RG, Cutler A, Quach A, Bowles A, Corcoran C, et al. Prospective study of Dietary Approaches to Stop Hypertension-and Mediterraneanstyle dietary patterns and age-related cognitive change: the Cache County Study on Memory, Health and Aging. Am J Clin Nutr. 2013;98(5):1263–71.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Berendsen AM, Kang JH, Van de Rest O, Feskens E, De Groot CPGM, Grodstein F. Adherence to the Dietary Approaches to Stop Hypertension diet, cognitive function and cognitive decline in American older women. unpublished results.Google Scholar
  9. 9.
    Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015;11(9):1007–14.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL, Bennett DA, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11(9):1015–22.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.CrossRefPubMedGoogle Scholar
  12. 12.
    Wilson RS, Schneider JA, Barnes LL, Beckett LA, Aggarwal NT, Cochran EJ, et al. The apolipoprotein E epsilon 4 allele and decline in different cognitive systems during a 6-year period. Arch Neurol. 2002;59(7):1154–60.CrossRefPubMedGoogle Scholar
  13. 13.
    Barberger-Gateau P, Raffaitin C, Letenneur L, Berr C, Tzourio C, Dartigues JF, et al. Dietary patterns and risk of dementia: the Three-City cohort study. Neurology. 2007;69(20):1921–30.CrossRefPubMedGoogle Scholar
  14. 14.
    Martinez-Lapiscina EH, Galbete C, Corella D, Toledo E, Buil-Cosiales P, Salas-Salvado J, et al. Genotype patterns at CLU, CR1, PICALM and APOE, cognition and Mediterranean diet: the PREDIMED-NAVARRA trial. Genes Nutr. 2014;9(3):393–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gardener SL, Rainey-Smith SR, Barnes MB, Sohrabi HR, Weinborn M, Lim YY, et al. Dietary patterns and cognitive decline in an Australian study of ageing. Mol Psychiatry. 2015;20(7):860–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Cherbuin N, Anstey KJ. The Mediterranean diet is not related to cognitive change in a large prospective investigation: the PATH Through Life study. Am J Geriatr Psychiatry. 2012;20(7):635–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Roberts RO, Geda YE, Cerhan JR, Knopman DS, Cha RH, Christianson TJ, et al. Vegetables, unsaturated fats, moderate alcohol intake, and mild cognitive impairment. Dementia and geriatric cognitive disorders. 2010;29(5):413–23.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol. 1985;122(1):51–65.CrossRefPubMedGoogle Scholar
  19. 19.
    Launer LJ. The epidemiologic study of dementia: a life-long quest? Neurobiol Aging. 2005;26(3):335–40.CrossRefPubMedGoogle Scholar
  20. 20.
    Brandt J, Spencer M, Folstein M. The telephone interview for cognitive status. Neuropsychiatry Neuropsychol Behav Neurol. 1988;1:111–7.Google Scholar
  21. 21.
    Albert M, Smith LA, Scherr PA, Taylor JO, Evans DA, Funkenstein HH. Use of brief cognitive tests to identify individuals in the community with clinically diagnosed Alzheimer’s disease. Int J Neurosci. 1991;57(3-4):167–78.CrossRefPubMedGoogle Scholar
  22. 22.
    Folstein MF, Folstein SE, McHugh PR. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedGoogle Scholar
  23. 23.
    Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology. 1989;39(9):1159–65.PubMedGoogle Scholar
  24. 24.
    Devore EE, Kang JH, Stampfer MJ, Grodstein F. The association of antioxidants and cognition in the Nurses’ Health Study. Am J Epidemiol. 2013;177(1):33–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Samieri C, Okereke OI, Devore EE, Grodstein F. Long-term adherence to the Mediterranean diet is associated with overall cognitive status, but not cognitive decline, in women. J Nutr. 2013;143(4):493–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982;38(4):963–74.CrossRefPubMedGoogle Scholar
  27. 27.
    Morris MC, Tangney CC. Dietary fat composition and dementia risk. Neurobiol Aging. 2014;35(Suppl 2):S59–64.CrossRefPubMedGoogle Scholar
  28. 28.
    Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, et al. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron. 2004;43(5):633–45.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci. 2005;25(12):3032–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Jiang Q, Ames BN. Gamma-tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J. 2003;17(8):816–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Yamada K, Tanaka T, Han D, Senzaki K, Kameyama T, Nabeshima T. Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1-42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. Eur J Neurosci. 1999;11(1):83–90.CrossRefPubMedGoogle Scholar
  32. 32.
    Chan A, Shea TB. Folate deprivation increases presenilin expression, gammasecretase activity, and Abeta levels in murine brain: potentiation by ApoE deficiency and alleviation by dietary S-adenosyl methionine. J Neurochem. 2007;102(3):753–60.CrossRefPubMedGoogle Scholar
  33. 33.
    Katayama S, Ogawa H, Nakamura S. Apricot carotenoids possess potent antiamyloidogenic activity in vitro. J Agric Food Chem. 2011;59(23):12691–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Nishida Y, Ito S, Ohtsuki S, Yamamoto N, Takahashi T, Iwata N, et al. Depletion of vitamin E increases amyloid beta accumulation by decreasing its clearances from brain and blood in a mouse model of Alzheimer disease. J Biol Chem. 2009;284(48):33400–8.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Obulesu M, Dowlathabad MR, Bramhachari PV. Carotenoids and Alzheimer’s disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int. 2011;59(5):535–41.CrossRefPubMedGoogle Scholar
  36. 36.
    Duron E, Hanon O. Hypertension, cognitive decline and dementia. Arch Cardiovasc Dis. 2008;101(3):181–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Feskens EJ, Havekes LM, Kalmijn S, de Knijff P, Launer LJ, Kromhout D. Apolipoprotein e4 allele and cognitive decline in elderly men. BMJ. 1994;309(6963):1202–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Devore EE, Kang JH, Breteler MM, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of neurology. 2012;72(1):135–43.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hu FB, Stampfer MJ, Rimm E, Ascherio A, Rosner BA, Spiegelman D, et al. Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am J Epidemiol. 1999;149(6):531–40.CrossRefPubMedGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France 2017

Authors and Affiliations

  • Agnes M. Berendsen
    • 1
    Email author
  • J. H. Kang
    • 2
  • E. J. M. Feskens
    • 1
  • C. P. G. M. de Groot
    • 1
  • F. Grodstein
    • 2
    • 3
  • O. van de Rest
    • 1
  1. 1.Wageningen University, Division of Human NutritionWageningenthe Netherlands
  2. 2.Channing Division of Network Medicine, Department of MedicineBrigham and Women’s Hospital/Harvard Medical SchoolBostonUSA
  3. 3.Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonUSA

Personalised recommendations