Skip to main content
Log in

Anti-aging effect of riboflavin via endogenous antioxidant in fruit fly Drosophila melanogaster

  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

This study investigated the effect of riboflavin on aging in Drosophila melanogaster (fruit fly).

Design

Experimental study.

Setting

Naval Medical Research Institute.

Participants

Fruit fly Drosophila melanogaster.

Intervention

After lifelong supplement of riboflavin, the lifespan and the reproduction of fruit flies were observed. Hydrogen peroxide (H2O2) was used to mimic oxidative stress damage to fruit flies and the survival time was recorded.

Measurements

The activity of copper-zinc-containing superoxide dismutase (SOD1), manganese containing SOD (SOD2) and catalase (CAT) and lipofuscin (LF) content were determined.

Results

Riboflavin significantly prolonged the lifespan (Log rank χ2=16.677, P<0.001) and increased the reproductive capacity (P<0.01 for day 15; P<0.05 for day 30) of fruit flies by lifelong supplement. The survival time of fruit flies damaged by H2O2 was significantly prolonged (Log rank χ2=15.886, P<0.001), the activity of SOD1 (P<0.01) and CAT (P<0.01) was enhanced, and the accumulation of LF (P<0.01) was inhibited by riboflavin supplement.

Conclusion

Riboflavin prolonged the lifespan and increased the reproduction of fruit flies through anti-oxidative stress pathway involving enhancing the activity of SOD1 and CAT and inhibiting LF accumulation. Riboflavin deserves more attention for slowing human aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Figure 1
Figure 2
Figure 3
Table 2
Table 3
Figure 4

Similar content being viewed by others

References

  1. Chen W, Chen JJ, Lu R, Qian C, Li WW, Yu HQ. Redox reaction characteristics of riboflavin: a fluorescence spectroelectrochemical analysis and density functional theory calculation. Bioelectrochemistry. 2014; 98:103–108. [PMID: 24769501]

    Article  CAS  PubMed  Google Scholar 

  2. Noback CR, Kupperman HS. Anomalous offspring and growth of Wistar rats maintained on a deficient diet. Proc Soc Exp Biol Med. 1944; 57:183–185.

    Article  CAS  Google Scholar 

  3. Warkany J, Nelson RC. Congenital malformations induced by rats by maternal nutritional deficiency. J Nutr. 1942; 23:83–100. [PMID: 13367284]

    Google Scholar 

  4. Coimbra CG, Junqueira VB. High doses of riboflavin and the elimination of dietary red meat promote the recovery of some motor functions in Parkinson’s disease patients. Braz J Med Biol Res. 2003; 36:1409–1417. [PMID: 14502375]

    Article  CAS  PubMed  Google Scholar 

  5. Eli MI., Li DS, Zhang WW, Kong B, Du CS, Wumar M, Mamtimin B, Sheyhidin I, Hasim A. Decreased blood riboflavin levels are correlated with defective expression of RFT2 gene in gastric cancer. World J Gastroenterol. 2012; 18:3112–3118. [PMID: 22791947]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zou YX, Zhang XH, Su FY, Liu X. Importance of riboflavin kinase in the pathogenesis of stroke. CNS Neurosci Ther. 2012; 18:834–840. [PMID: 22925047]

    Article  CAS  PubMed  Google Scholar 

  7. Horigan G, McNulty H, Ward M, Strain JJ, Purvis J, Scott JM. Riboflavin lowers blood pressure in cardiovascular disease patients homozygous for the 677C—>T polymorphism in MTHFR. J Hypertens. 2010; 28:478–486. [PMID: 19952781]

    Article  CAS  PubMed  Google Scholar 

  8. Hung WW, Ross JS, Boockvar KS, Siu AL. Recent trends in chronic disease, impairment and disability among older adults in the United States. BMC Geriat. 2011; 11:47. [PMID: 21851629]

    Article  Google Scholar 

  9. Bates CJ, Prentice AM, Cole TJ, van der Pols JC, Doyle W, Finch S, Smithers G, Clarke PC. Micronutrients: highlights and research challenges from the 1994-5 National Diet and Nutrition Survey of people aged 65 years and over. Br J Nutr. 1999; 82:7–15. [PMID: 10655951]

    Article  CAS  PubMed  Google Scholar 

  10. Madigan SM. Riboflavin and vitamin B6 intakes and status and biochemical response to riboflavin supplementation in free living elderly people. Am J Clin Nutr. 1998; 68:389–395. [PMID: 9701198]

    CAS  PubMed  Google Scholar 

  11. Bailey AL. Relationships between micronutrient intake and biochemical indicators of nutrient adequacy in a free-living elder UK population. Br J Nutr. 1997; 77:225–242. [PMID: 9135369]

    Article  CAS  PubMed  Google Scholar 

  12. Genova ML, Lenaz G. The Interplay Between Respiratory Supercomplexes and ROS in Aging. Antioxid Redox Signal. 2015; 23:208–238. [PMID: 25711676]

    Article  CAS  PubMed  Google Scholar 

  13. Goncalves RL, Rothschild DE, Quinlan CL, Scott GK, Benz CC, Brand MD. Sources of superoxide/H2O2 during mitochondrial proline oxidation. Redox Biol. 2014; 2:901–909. [PMID: 25184115]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Falfushynska HI, Gnatyshyna LL, Osadchuk OY, Farkas A, Vehovszky A, Carpenter DO, Gyori J, Stoliar OB. Diversity of the molecular responses to separate wastewater effluents in freshwater mussels. Comp Biochem Physiol C Toxicol Pharmacol. 2014; 164:51–58. [PMID: 24816276]

    Article  CAS  PubMed  Google Scholar 

  15. Leclerc J, Miller ML. Changes in the content of riboflavin and its coenzyme in tissues during the aging of rats. Ann Nutr Metab. 1981; 25:20–26. [PMID: 7259107]

    Article  CAS  PubMed  Google Scholar 

  16. Takeuchi N, Shishino K, Bando S, Murase M, Go S, Uchida K. Aging changes of riboflavin concentration and glutathione reductase activity in erythrocytes. Arch Geront Geriat 1985; 4:205–210. [PMID: 2416282]

    Article  CAS  Google Scholar 

  17. Said HM, Hollander D. Does aging affect the intestinal transport of riboflavin? Life Sci 1985; 36:69–73. [PMID: 3965842]

    Article  CAS  PubMed  Google Scholar 

  18. Zou YX, Liu YX, Ruan MH, Feng X, Wang JC, Chu ZY, Zhang ZS. Cordyceps sinensis oral liquid prolongs the lifespan of fruit fly Drosophila melanogaster through inhibiting oxidative stress. Int J Mol Med. 2015; 36:939–946. [PMID: 26239097]

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Katz-Jaffe MG, Parks J, McCallie B, Schoolcraft WB. Aging sperm negatively inpacts in vivo and in vitro reproduction: a longitudinal murine study. Fertil Steril. 2013; 100:262–268. [PMID: 23579004]

    Article  PubMed  Google Scholar 

  20. Luk J, Greenfeld DA, Seli E. Third party reproduction and the aging couple. Maturitas. 2010; 66:389–396. [PMID: 20451337]

    Article  PubMed  Google Scholar 

  21. Chan J, Deng L, Mikael LG, Yan J, Pickell L, Wu Q, Caudill MA, Rozen R. Low dietary choline and low dietary riboflavin during pregnancy influence reproductive outcoumes and heart development in mice. Am J Clin Nutr. 2010; 91:1035–1043. [PMID: 20164309]

    Article  CAS  PubMed  Google Scholar 

  22. Nelson MM, Baird CD, Wright HV, Evans HM. Multiple congenital abnormalities in the rat resulting from riboflavin deficiency induced by the antimetabolite galactoflavin. J Nutr. 1956; 58:125–134. [PMID: 13286747]

    CAS  PubMed  Google Scholar 

  23. Kalter H, Warkany J. Congenital malformations in inbred strains of mice induced by riboflavin-deficient, galactoflavin-containing diets. J Exp Zool. 1957;136:531–565. [PMID: 13525599]

    Article  CAS  PubMed  Google Scholar 

  24. Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015; 6:109–120. [PMID: 25821639]

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ma Q. Advances in Mechanisms of Anti-oxidation. Discov Med. 2014; 17:121–130. [PMID: 24641954]

    PubMed  PubMed Central  Google Scholar 

  26. Bütün A, Naziroglu M, Demirci S, Çelik Ö, Uguz AC. Riboflavin and vitamin E increase brain calcium and antioxidants, and microsomal calcium-ATP-ase values in rat headache models induced by glyceryl trinitrate. J Membrane Biol 2015; 248:205–213. [PMID: 25425044]

    Article  Google Scholar 

  27. Alam MM, Igbal S, Naseem I. Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: Mechanistic and therapeutic strategies. Arch Biochem Biophys. 2015; 584:10–19. [PMID: 26319175]

    Article  CAS  PubMed  Google Scholar 

  28. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014; 24:R453–R462. [PMID: 24845678]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sadowska-Bartosz I, Bartosz G. Effect of antioxidants supplementation on aging and longevity. Biome. Res Int. 2014; 2014:404680. [PMID: 24783202]

    Article  Google Scholar 

  30. Albuguergue RV, Malcher NS, Amado LL, Coleman MD, Dos Santos DC, Borges RS, Valente SA, Valente VC, Monteiro MC. In Vitro Protective Effect and Antioxidant Mechanism of Resveratrol Induced by Dapsone Hydroxylamine in Human Cells. PLoS One. 2015; 10:e0134768. [PMID: 26284371]

    Article  Google Scholar 

  31. Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet. 2011; 7:e1002306. [PMID: 21980307]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013; 153:1194–1217. [PMID: 23746838]

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gropper SS, Smith JL, Groff JL. The Water Soluble Vitamins, in: Advanced Nutrition and Human Metabolism. (5th Ed), Wadsworth: Cengage Learning. 2009; pp:329–333.

    Google Scholar 

  34. Boehnke C, Reuter U, Flach U, Schuh-Hofer S, Einhäupl KM, Arnold G. High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre. Eur J Neurol. 2004; 11:475–477. [PMID: 15257686]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Yong Chu.

Additional information

The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, YX., Ruan, MH., Luan, J. et al. Anti-aging effect of riboflavin via endogenous antioxidant in fruit fly Drosophila melanogaster. J Nutr Health Aging 21, 314–319 (2017). https://doi.org/10.1007/s12603-016-0752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-016-0752-8

Key words

Navigation