Skip to main content
Log in

Evaluation of Antifungal Metabolites Produced by Lactic Acid Bacteria

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

This study aimed to select and characterize lactic acid bacteria (LAB) with potential antifungal activities against the filamentous fungi Alternaria alternata ATCC MYA-4642, Aspergillus flavus KACC 45470, Aspergillus niger KACC 42589, Cladosporium sphaerospermum ATCC MYA-4645, Penicillium chrysogenum ATCC MYA-4644, and Penicillium expansum KACC 40815. Initial screening of the antifungal activity has identified six LAB strains belonging to the genera Enterococcus and Leuconostoc, selected by their antagonistic activities against at least three of the filamentous fungi in the test panel. Preliminary prediction of bioactive compounds was carried out to narrow down the possible identity of the antagonistic metabolites produced by the studied LAB. Furthermore, metabolic profiles were assessed and used as a basis for the identification of key metabolites based on VIP scores and PCA plot scores. Key metabolites were identified to be β-phenyllactic acid, ⍺-hydroxyisobutyric acid, 1,3-butanediol, phenethylamine, and benzoic acid. Individual assessment of each metabolic compound against the test panel showed specificity inhibitory patterns; yet, combinations between them only showed additive, but not synergetic effects. The pH neutralization significantly reduced the antifungal activity of the cell-free supernatant (CFS), but no bioactive compounds were found to be stable in high temperatures and pressure. This study will be beneficial as an additional building block on the existing knowledge and future antifungal application of LAB produced metabolites. Furthermore, this study also provides a new bio-preservative perspective on unexplored antifungal metabolites produced by LAB as biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated related to this project is available upon request from the authors of the manuscript.

References

  1. Izquierdo E, Bednarczyk A, Schaeffer C, Cai Y, Marchioni E, Van Dorsselaer A et al (2008) Production of enterocins L50A, L50B, and IT, a new enterocin, by Enterococcus faecium IT62, a strain isolated from Italian ryegrass in Japan. Antimicrob Agents Chemother 52(6):1917–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aymerich T, Garriga M, Ylla J, Vallier J, Monfort JM, Hugas M (2000) Application of enterocins as biopreservatives against Listeria innocua in meat products. J Food Protect 63(6):721–726

    Article  CAS  Google Scholar 

  3. Furlaneto-Maia L, Ramalho R, Rocha KR, Furlaneto MC (2020) Antimicrobial activity of enterocins against Listeria sp. and other food spoilage bacteria. Biotechnol Lett 42(5):797–806

  4. Inoue Y, Hagi A, Nii T, Tsubotani Y, Nakata H, Iwata K (2015) Novel antiseptic compound OPB-2045G shows potent bactericidal activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus both in vitro and in vivo: a pilot study in animals. J Med Microbiol 64(1):32–36

    Article  CAS  PubMed  Google Scholar 

  5. Leite EL, Oliveira Jr AFD, Carmo FLRD, Berkova N, Barh D, Ghosh P et al (2021) Bacteriocins as an alternative in the treatment of infections by Staphylococcus aureus. An Acad Bras Ciênc 92. Available from: http://www.scielo.br/j/aabc/a/3HXbRDyV95vHrFm4Rdnzyhy/?lang=en

  6. Jung S, Woo C, Fugaban JII, Vazquez Bucheli JE, Holzapfel WH, Todorov SD (2021) Bacteriocinogenic potential of Bacillus amyloliquefaciens isolated from kimchi, a traditional Korean fermented cabbage. Prob Antimicro Prot 13:1195–1212. https://doi.org/10.1007/s12602-021-09772-w

    Article  CAS  Google Scholar 

  7. Axel C, Brosnan B, Zannini E, Furey A, Coffey A, Arendt EK (2016) Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. Int J Food Microbiol 239:86–94

    Article  CAS  PubMed  Google Scholar 

  8. Bian X, Muhammad Z, Evivie SE, Luo GW, Xu M, Huo GC (2016) Screening of antifungal potentials of Lactobacillus helveticus KLDS 1.8701 against spoilage microorganism and their effects on physicochemical properties and shelf life of fermented soybean milk during preservation. Food Control 66:183–189

    Article  CAS  Google Scholar 

  9. Magnusson J, Ström K, Roos S, Sjögren J, Schnürer J (2003) Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett 219(1):129–135

    Article  CAS  PubMed  Google Scholar 

  10. Roy U, Jai KK, Sunita G, Virender KB (2009) Partial purification of an antifungal protein produced by Enterococcus faecalis CHD 28.3. Ann Microbiol 59(2):279–284

  11. Lass-Flörl C, Mayr A, Perkhofer S, Hinterberger G, Hausdorfer J, Speth C et al (2008) Activities of antifungal agents against yeasts and filamentous fungi: assessment according to the methodology of the European committee on antimicrobial susceptibility testing. Antimicrob Agents Chemother 52(10):3637–3641

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zoghi A, Massoud R, Todorov SD, Chikindas ML, Popov I, Smith S et al (2017) Role of the lactobacilli in food bio-decontamination: friends with benefits. Enzyme Microb Technol 150:109861

    Article  Google Scholar 

  13. Egbuta MA, Mwanza M, Babalola OO (2017) Health risks associated with exposure to filamentous fungi. Int J Environ Res Public Health 14(7):719

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol 66(9):4084–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Magnusson J, Schnürer J (2001) Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl Environ Microbiol 67(1):1–5

  16. Ström K, Sjögren J, Broberg A, Schnürer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(l-Phe-l-Pro) and cyclo(l-Phe-trans-4-OH-l-Pro) and 3-phenyllactic acid. Appl Environ Microbiol 68(9):4322–4327

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bartkiene E, Lele V, Ruzauskas M, Domig KJ, Starkute V, Zavistanaviciute P et al (2020) Lactic acid bacteria isolation from spontaneous sourdough and their characterization including antimicrobial and antifungal properties evaluation. Microorganisms 8(1):64

    Article  CAS  Google Scholar 

  18. Garmiene G, Salomskiene J, Jasutiene I, Macioniene I, Miliauskiene I (2010) Production of benzoic acid by lactic acid bacteria from Lactobacillus, Lactococcus and Streptococcus genera in milk. Milchwissenschaft 65(3):295–298

    CAS  Google Scholar 

  19. Mu W, Liu F, Jia J, Chen C, Zhang T, Jiang B (2009) 3-Phenyllactic acid production by substrate feeding and pH-control in fed-batch fermentation of Lactobacillus sp. SK007. Biores Technol 100(21):5226–5229

  20. Bianchini A (2015) Chapter 14 - Lactic acid bacteria as antifungal agents. In: Holzapfel W (Ed). Advances in fermented foods and beverages. Woodhead Publishing. p. 333–353. Available from: https://www.sciencedirect.com/science/article/pii/B9781782420156000141

  21. Romanens E, Freimüller Leischtfeld S, Volland A, Stevens MJA, Krähenmann U, Isele D et al (2019) Screening of lactic acid bacteria and yeast strains to select adapted anti-fungal co-cultures for cocoa bean fermentation. Int J Food Microbiol 290:262–272

    Article  CAS  PubMed  Google Scholar 

  22. Bulgasem BY, Lani MN, Hassan Z, Wan Yusoff WM, Fnaish SG (2016) Antifungal activity of lactic acid bacteria strains isolated from natural honey against pathogenic Candida species. Mycobiol 44(4):302–309

    Article  Google Scholar 

  23. Okkers DJ, Dicks LM, Silvester M, Joubert JJ, Odendaal HJ (1999) Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J Appl Microbiol 87(5):726–734

    Article  CAS  PubMed  Google Scholar 

  24. Voulgari K, Hatzikamari M, Delepoglou A, Georgakopoulos P, Litopoulou-Tzanetaki E, Tzanetakis N (2010) Antifungal activity of non-starter lactic acid bacteria isolates from dairy products. Food Control 21(2):136–142

    Article  CAS  Google Scholar 

  25. Mandal V, Sen SK, Mandal NC (2007) Detection, isolation and partial characterization of antifungal compound(s) produced by Pediococcus acidilactici LAB 5. Nat Prod Communic 2(6):1934578X0700200610

  26. Patra JK, Das G, Paramithiotis S, Shin HS (2016) Kimchi and other widely consumed traditional fermented foods of Korea: a review. Front Microbiol 7:1493

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jeong DW, Kim HR, Jung G, Han S, Kim CT, Lee JH (2014) Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. J Microbiol Biotechnol 24(5):648–660

    Article  CAS  PubMed  Google Scholar 

  28. Jung S, Hwang H, Lee JH (2019) Effect of lactic acid bacteria on phenyllactic acid production in kimchi. Food Control 106:106701

    Article  CAS  Google Scholar 

  29. Jeong M, Jeong DW, Lee JH (2015) Safety and biotechnological properties of Enterococcus faecalis and Enterococcus faecium isolates from meju. J Korean Soc Appl Biol Chem 58(6):813–820

    Article  CAS  Google Scholar 

  30. Ryu JA, Kim E, Kim MJ, Lee S, Yoon SR, Ryu JG et al (2021) Physicochemical characteristics and microbial communities in gochujang, a traditional Korean fermented hot pepper paste. Front Microbiol 11: article/10.3389

  31. Jung MY, Kim TW, Lee C, Kim JY, Song HS, Kim YB et al (2018) Role of jeotgal, a Korean traditional fermented fish sauce, in microbial dynamics and metabolite profiles during kimchi fermentation. Food Chem 265:135–143

    Article  CAS  PubMed  Google Scholar 

  32. Tamang JP, Tamang B, Schillinger U, Guigas C, Holzapfel WH (2009) Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. Int J Food Microbiol 135(1):28–33

    Article  CAS  PubMed  Google Scholar 

  33. Schillinger U, Holzapfel WH (2021) Chapter 8: Culture media for lactic acid bacteria. In: Corry JEL, Curtis GDW, Baird RM (Eds). Progress in industrial microbiology. Elsevier p. 127–40

  34. de Vos P, Garrity GM, Jones D, Kreig NR, Ludwig W, Rainey FA et al (2009) Bergey’s manual of systematic bacteriology. Volume 3. The Firmicutes. Hoboken, NJ: Wiley Publishing Group. https://doi.org/10.1002/9781118960608

  35. Fugaban JII, Vazquez Bucheli JE, Holzapfel WH, Todorov SD (2021) Bacteriocinogenic Bacillus spp. isolated from Korean fermented cabbage (kimchi)—Beneficial or Hazardous? Fermentation 7(2):56

  36. Woo C, Jung S, Fugaban JII, Bucheli JEV, Holzapfel WH, Todorov SD (2021) Bacteriocin production by Leuconostoc citreum ST110LD isolated from organic farm soil, a promising biopreservative. J Appl Microbiol 131(3):1226–1239

    Article  CAS  PubMed  Google Scholar 

  37. de Moraes GMD, de Abreu LR, do Egito AS, Salles HO, da Silva LMF, Nero LA et al (2017) Functional properties of Lactobacillus mucosae strains isolated from Brazilian goat milk. Prob Antimicrob Prot 9(3):235–245

  38. Rhee SY, Jung ES, Park HM, Jeong SJ, Kim K, Chon S et al (2018) Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy. Metabolomics 14(7):89

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kumar A, Jha A (2017) Chapter 7 - Drug development strategies. In: Kumar A, Jha A (Eds). Anticandidal agents. Academic Press p. 63–71

  40. Lavermicocca P, Valerio F, Visconti A (2003) Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl Environ Microbiol 69(1):634–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manu DK (2012) Antimicrobial effectiveness of phenyllactic acid against foodborne pathogenic bacteria and Penicillium and Aspergillus molds. Master of Science thesis. Iowa State University. Available from: https://lib.dr.iastate.edu/etd/12847/

  42. Faleiro ML, Miguel MG (2013) Chapter 6 - Use of essential oils and their components against multidrug-resistant bacteria. In: Rai MK, Kon KV (Eds). Fighting multidrug resistance with herbal extracts, essential oils and their components. San Diego: Academic Press. p. 65–94. Available from: https://www.sciencedirect.com/science/article/pii/B9780123985392000069

  43. Franz CMAP, Cho GS, Holzapfel WH, Gálvez A (2010) Safety of lactic acid bacteria. In: Biotechnology of lactic acid bacteria. John Wiley & Sons, Ltd. p. 341–359. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780813820866.ch19

  44. Linton JD (1990) The relationship between metabolite production and the growth efficiency of the producing organism. FEMS Microbiol Lett 75(1):1–18

    Article  CAS  Google Scholar 

  45. Park B, Hwang H, Chang JY, Hong SW, Lee SH, Jung MY et al (2017) Identification of 2-hydroxyisocaproic acid production in lactic acid bacteria and evaluation of microbial dynamics during kimchi ripening. Sci Rep 7(1):10904

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zabouri Y, Cheriguene A, Chougrani F, Merzouk Y, Marchetta A, Urzì C et al (2021) Antifungal activity of lactic acid bacteria against phytopathogenic Alternaria alternata species and their molecular characterization. J Food Nutr Res 60(1):18–28

    CAS  Google Scholar 

  47. Trias R, Bañeras L (2008) Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol 11:231–236

    CAS  PubMed  Google Scholar 

  48. Nogueira MA, Diaz G, Stangarlin JR (2007) Search of antibiotic metabolites from phytopathogenic fungi. Latin Amer J Pharm 26(5):741–743

    CAS  Google Scholar 

  49. De Muynck C, Leroy AIJ, De Maeseneire S, Arnaut F, Soetaert W, Vandamme EJ (2004) Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites. Microbiol Res 159(4):339–346

    Article  PubMed  Google Scholar 

  50. Baek E, Kim H, Choi H, Yoon S, Kim J (2012) Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes. J Microbiol 50(5):842–848

    Article  PubMed  Google Scholar 

  51. Holzapfel WH, Björkroth JA, Dicks LMT (2015) Leuconostoc. In: Bergey’s Manual of Systematics of Archaea and Bacteria. p. 1–23

  52. Barman S, Ghosh R, Sengupta S, Mandal NC (2017) Long term storage of post-packaged bread by controlling spoilage pathogens using Lactobacillus fermentum C14 isolated from homemade curd. PLoS ONE 12(8):e0184020

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gerez CL, Carbajo MS, Rollán G, Torres Leal G, Font de Valdez G (2010) Inhibition of citrus fungal pathogens by using lactic acid bacteria. J Food Sci 75(6):M354-359

    Article  CAS  PubMed  Google Scholar 

  54. Guo J, Brosnan B, Furey A, Arendt E, Murphy P, Coffey A (2012) Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioeng Bugs 3(2):102–111

    PubMed Central  Google Scholar 

  55. Juodeikiene G, Bartkiene E, Cernauskas D, Cizeikiene D, Zadeike D, Lele V et al (2018) Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT 89:307–314

    Article  CAS  Google Scholar 

  56. Lipińska L, Klewicki R, Klewicka E, Kołodziejczyk K, Sójka M, Nowak A (2016) Antifungal activity of Lactobacillus sp. bacteria in the presence of xylitol and galactosyl-xylitol. BioMed Res Int 2016:e5897486.

  57. Valerio F, Favilla M, De Bellis P, Sisto A, de Candia S, Lavermicocca P (2009) Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Syst Appl Microbiol 32(6):438–448

    Article  CAS  PubMed  Google Scholar 

  58. Ilavenil S, Park HS, Vijayakumar M, Valan Arasu M, Kim DH, Ravikumar S et al (2015) Probiotic potential of Lactobacillus strains with antifungal activity isolated from animal manure. Sci World J 2015:e802570

    Article  Google Scholar 

  59. Sellamani M, Kalagatur NK, Siddaiah C, Mudili V, Krishna K, Natarajan G et al (2016) Antifungal and zearalenone inhibitory activity of Pediococcus pentosaceus isolated from dairy products on Fusarium graminearum. Front Microbiol 7:890

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mauch A, Dal Bello F, Coffey A, Arendt EK (2010) The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. Int J Food Microbiol 141(1–2):116–121

    Article  CAS  PubMed  Google Scholar 

  61. Manu DK (2012) Antimicrobial effectiveness of phenyllactic acid against foodborne pathogenic bacteria and Penicillium and Aspergillus molds. Master of Science thesis, Iowa State University, p. 4188168. Available from: https://lib.dr.iastate.edu/etd/12847/

  62. Lang CH, Pruznak A, Navaratnarajah M, Rankine KA, Deiter G, Magne H et al (2013) Chronic α-hydroxyisocaproic acid treatment improves muscle recovery after immobilization-induced atrophy. Amer J Physiol-Endocrinol Metabol 305(3):E416-428

    Article  CAS  Google Scholar 

  63. Sakko M, Moore C, Novak-Frazer L, Rautemaa V, Sorsa T, Hietala P et al (2014) 2-hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species. Mycoses 57(4):214–221

    Article  CAS  PubMed  Google Scholar 

  64. de Werra P, Péchy-Tarr M, Keel C, Maurhofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 75(12):4162–4174

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kaur K, Andrew LC, Wishart DS, Vederas JC (2004) Dynamic relationships among type IIa bacteriocins: temperature effects on antimicrobial activity and on structure of the C-terminal amphipathic α helix as a receptor-binding region. Biochem 43(28):9009–9020

    Article  CAS  Google Scholar 

  66. Rohwerder T, Müller RH (2010) Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon. Microb Cell Fact 9(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang H, HuangFu H, Wang X, Zhao S, Liu Y, Lv H et al (2021) Antibacterial activity of lactic acid producing Leuconostoc mesenteroides QZ1178 against pathogenic Gallibacterium anatis. Front Veter Sci 8:368

    CAS  Google Scholar 

  68. González De Llano D, Cuesta P, Rodríguez A (1998) Biogenic amine production by wild lactococcal and leuconostoc strains. Lett Appl Microbiol 26(4):270–274

    Article  PubMed  Google Scholar 

  69. Moreno-Arribas V, Torlois S, Joyeux A, Bertrand A, Lonvaud-Funel A (2000) Isolation, properties and behaviour of tyramine-producing lactic acid bacteria from wine. J Appl Microbiol 88(4):584–593

    Article  CAS  PubMed  Google Scholar 

  70. Bover-Cid S, Hugas M, Izquierdo-Pulido M, Vidal-Carou MC (2001) Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. Int J Food Microbiol 66(3):185–189

    Article  CAS  PubMed  Google Scholar 

  71. Vaca J, Salazar F, Ortiz A, Sansinenea E (2020) Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study. J Antibiot 73(11):798–802

    Article  CAS  Google Scholar 

  72. Niku-Paavola ML, Laitila A, Mattila-Sandholm T, Haikara A (1999) New types of antimicrobial compounds produced by Lactobacillus plantarum. J Appl Microbiol 86(1):29–35

    Article  CAS  PubMed  Google Scholar 

  73. Kataoka N, Vangnai AS, Ueda H, Tajima T, Nakashimada Y, Kato J (2014) Enhancement of (R)-1,3-butanediol production by engineered Escherichia coli using a bioreactor system with strict regulation of overall oxygen transfer coefficient and pH. Biosci Biotechnol Biochem 78(4):695–700

    Article  CAS  PubMed  Google Scholar 

  74. Okabayashi T, Nakajima K, Yamamoto H (2011) Transgenic microorganism provided with the ability to produce 1,3-butanediol, and usage therefor. WO2011052718A1 Available from: https://patents.google.com/patent/WO2011052718A1/en

  75. Mu W, Yu S, Zhu L, Zhang T, Jiang B (2012) Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound. Appl Microbiol Biotechnol 95(5):1155–1163

    Article  CAS  PubMed  Google Scholar 

  76. Prema P, Smila D, Palavesam A, Immanuel G (2010) Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum Strain. Food Biopr Technol 3(3):379–386

    Article  CAS  Google Scholar 

  77. Song JS, Jang JY, Han CH, Yoon MH (2015) Production of phenyl lactic acid (PLA) by lactic acid bacteria and its antifungal effect. Korean J Soil Sci Fertil 48(2):125–131

    Article  CAS  Google Scholar 

  78. Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53(1):33–41

    Article  CAS  PubMed  Google Scholar 

  79. Franz CMAP, Holzapfel WH, Stiles ME (1999) Enterococci at the crossroads of food safety? Int J Food Microbiol 47(1):1–24

    Article  CAS  PubMed  Google Scholar 

  80. Holzapfel W, Arini A, Aeschbacher M, Coppolecchia R, Pot B (2018) Enterococcus faecium SF68 as a model for efficacy and safety evaluation of pharmaceutical probiotics. Benef Microbes 9(3):375–388

    Article  CAS  PubMed  Google Scholar 

  81. Valerio F, Di Biase M, Lattanzio VMT, Lavermicocca P (2016) Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid. Int J Food Microbiol 222:1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

To Yu Jin Park and Dong Ho Suh from HEM Pharma Inc., Suwon, the Republic of Korea for technical assistance in metabolomic analysis experimental performance.

Funding

This research was supported by the grant from the National Research Foundation (NRF), funded by the Ministry of Science & ICT (NRF-2018M3A9F3021964), Seoul, Republic of Korea, and Program for Visiting Professors at Handong Global University, Pohang, South Korea, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Concept: SDT and WHH; Experimental work: JIIF, ESJ (metabolomic analysis); Analysis of obtained results: JIIF and SDT; Funds: WHH and SDT; Writing of the manuscript: JIIF; Scientific corrections and editing: SDT and WHH.

Corresponding author

Correspondence to Svetoslav Dimitrov Todorov.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fugaban, J.I.I., Jung, E.S., Todorov, S.D. et al. Evaluation of Antifungal Metabolites Produced by Lactic Acid Bacteria. Probiotics & Antimicro. Prot. 15, 1447–1463 (2023). https://doi.org/10.1007/s12602-022-09995-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09995-5

Keywords

Navigation