Skip to main content
Log in

Exercise Training and Probiotic Lacticaseibacillus rhamnosus GG Reduce Tetracycline-Induced Liver Oxidative Stress and Inflammation in Rats with Hepatic Steatosis

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lifestyle modification with regular exercise can improve metabolic diseases by reducing lipid profile and inflammation. Probiotics have been recently recommended not only for gastrointestinal diseases but also for metabolic and even degenerative diseases. Therefore, in the present study, the effect of high-intensity interval training (HIIT) and Lacticaseibacillus rhamnosus strain GG (LGG) as a probiotic on tetracycline-induced hepatic steatosis in an animal model was evaluated. Eighty male Wistar rats were randomly divided into eight groups (n = 10 in each group): control, LGG, HIIT, LGG + HIIT, tetracycline-induced (TTC), TTC + LGG, TTC + HIIT, and TTC + LGG + HIIT. The rats are treated by intraperitoneal injection (IP) with 140 mg kg−1 tetracycline, an antibiotic previously known to induce steatosis. The exercise training groups performed HIIT 5 days/week for 5 weeks, and 107 CFU/ml of Lacticaseibacillus rhamnosus GG was gavaged for the LGG groups 5 days/week for 5 weeks. Fatty droplets in the hepatocyte were considered with Oil Red staining. TTC-receiving rats have more lipid accumulation and larger lipid droplets in the liver compared to healthy animals. The two-way ANOVA showed that the interaction of LGG and HIIT significantly decreased LDL, cholesterol, and triglyceride in the healthy rats (p < 0.05). In TTC-receiving rats, the interaction of LGG and HIIT significantly increased HDL and SOD and significantly decreased triglyceride, ALP, AST, and ALT (p < 0.05). The consumption of probiotic LGG, along with HIIT with control of lipid profile and liver enzymes and improvement of the oxidative capacity, neutralizes the damage of TTC to liver tissue. Therefore, this protocol can be recommended for people with hepatic steatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bullón-Vela V, Abete I, Tur JA, Pintó X, Corbella E, Martínez-González MA et al (2020) Influence of lifestyle factors and staple foods from the Mediterranean diet on non-alcoholic fatty liver disease among older individuals with metabolic syndrome features. Nutrition 71:110620

    Article  PubMed  Google Scholar 

  2. Geng Y, Faber KN, de Meijer VE, Blokzijl H, Moshage H (2021) How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol Int 1–15

  3. Aghaei F, Zargani M, Feizollahi F (2021) Fatty liver disease, risks, strategies, and its relationship with COVID-19 with an emphasis on nutrition and exercise. J Exerc Organ Cross Talk 1(1):29–46

    Google Scholar 

  4. Faghihzadeh F, Adibi P, Rafiei R, Hekmatdoost A (2014) Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr Res 34(10):837–843

    Article  CAS  PubMed  Google Scholar 

  5. Yilmaz Y (2012) Is non-alcoholic fatty liver disease a spectrum, or are steatosis and non-alcoholic steatohepatitis distinct conditions? Aliment Pharmacol Ther 36(9):815–823

    Article  CAS  PubMed  Google Scholar 

  6. Morisco F, Vitaglione P, Amoruso D, Russo B, Fogliano V, Caporaso N (2008) Foods and liver health. Mol Aspects Med 29(1–2):144–150

    Article  CAS  PubMed  Google Scholar 

  7. Godoy-Matos AF, Júnior WSS, Valerio CM (2020) NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol Metab Syndr 12(1):1–20

    Article  Google Scholar 

  8. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65(8):1038–1048

    Article  CAS  PubMed  Google Scholar 

  9. Hosseinabadi S, Rafraf M, Asghari S, Asghari-Jafarabadi M, Vojouhi S (2020) Effect of green coffee extract supplementation on serum adiponectin concentration and lipid profile in patients with non-alcoholic fatty liver disease: a randomized, controlled trial. Complement Ther Med 49:102290

    Article  PubMed  Google Scholar 

  10. Byrne CD, Targher G (2015) NAFLD: a multisystem disease. J Hepatol 62(1):S47–S64

    Article  PubMed  Google Scholar 

  11. Roskams T, Yang SQ, Koteish A, Durnez A, DeVos R, Huang X et al (2003) Oxidative stress and oval cell accumulation in mice and humans with alcoholic and nonalcoholic fatty liver disease. Am J Pathol 163(4):1301–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Obika M, Noguchi H (2011) Diagnosis and evaluation of nonalcoholic fatty liver disease. Exp Diabetes Res 2012

  13. Xue L, He J, Gao N, Lu X, Li M, Wu X et al (2017) Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 7(1):1–13

    Google Scholar 

  14. Ceccarelli S, Nobili V, Alisi A (2014) Toll-like receptor-mediated signaling cascade as a regulator of the inflammation network during alcoholic liver disease. World J Gastroenterol: WJG 20(44):16443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen P, Stärkel P, Turner JR, Ho SB, Schnabl B (2015) Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 61(3):883–894

    Article  CAS  PubMed  Google Scholar 

  16. Chu H, Williams B, Schnabl B (2018) Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver research 2(1):43–51

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shi X, Wei X, Yin X, Wang Y, Zhang M, Zhao C et al (2015) Hepatic and fecal metabolomic analysis of the effects of Lactobacillus rhamnosus GG on alcoholic fatty liver disease in mice. J Proteome Res 14(2):1174–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ji Y, Park S, Park H, Hwang E, Shin H, Pot B et al (2018) Modulation of active gut microbiota by Lactobacillus rhamnosus GG in a diet induced obesity murine model. Front Microbiol 9:710

    Article  PubMed  PubMed Central  Google Scholar 

  19. Darby TM, Naudin CR, Luo L, Jones RM (2020) Lactobacillus rhamnosus GG–induced expression of leptin in the intestine orchestrates epithelial cell proliferation. Cell Mol Gastroenterol Hepatol 9(4):627–639

    Article  PubMed  Google Scholar 

  20. Rinella ME, Sanyal AJ (2016) Management of NAFLD: a stage-based approach. Nat Rev Gastroenterol Hepatol 13(4):196–205

    Article  CAS  PubMed  Google Scholar 

  21. Sen CK (1995) Oxidants and antioxidants in exercise. J Appl Physiol 79(3):675–686

    Article  CAS  PubMed  Google Scholar 

  22. Hovsepian V, Marandi SM, Esfarjani F, Zavar R, Sadeghi M (2019) The effect of all-extremity high-intensity interval training on plasma pentraxin 3 in young overweight and obese women. Asian J Sports Med 10(4)

  23. Candrawati S, Huriyati E, Sofro ZM, Rujito L, Faza AN, Rohmawati ON et al (2021) High-intensity interval training improves inflammatory mediators in obese women: based on the study of the UCP2 Ala55Val gene. Open Access Maced J Med Sci. 9(A):871–875

    Article  Google Scholar 

  24. Delphan M, Delfan M, Delfan N, West D, Nikpour H, Rostamkhani F (2021) High intensity interval exercise alters muscle IL-18, FNDC5, and hepatic MMPs in animal model of steatosis: evidence of skeletal muscle—liver crosstalk. J Exerc Organ Cross Talk 1(3):115–123

    Google Scholar 

  25. Evangelista FS, Muller CR, Stefano JT, Torres MM, Muntanelli BR, Simon D et al (2015) Physical training improves body weight and energy balance but does not protect against hepatic steatosis in obese mice. Int J Clin Exp Med 8(7):10911

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang H, Tong TK, Qiu W, Zhang X, Zhou S, Liu Y et al (2017) Comparable effects of high-intensity interval training and prolonged continuous exercise training on abdominal visceral fat reduction in obese young women. J Diabetes Res 2017

  27. Banihashemi M, Yazdkhasti E, Mahmoudi Haghshenas M, Rostamkhani F (2022) Influence of high intensity interval training on adipose tissue PAI-2 and MMP-2 mRNAs expression in rat with high-fat diet-induced metabolic syndrome. J Exerc Organ Cross Talk 2(2):47–53

    Google Scholar 

  28. Shabana M, Ibrahim HM, Khadre SE, Elemam MG (2012) Influence of rifampicin and tetracycline administration on some biochemical and histological parameters in albino rats. J Basic Appl Zool 65(5):299–308

    Article  CAS  Google Scholar 

  29. Kalaki-Jouybari F, Shanaki M, Delfan M, Gorgani-Firouzjae S, Khakdan S (2020) High-intensity interval training (HIIT) alleviated NAFLD feature via miR-122 induction in liver of high-fat high-fructose diet induced diabetic rats. Arch Physiol Biochem 126(3):242–249

    Article  CAS  PubMed  Google Scholar 

  30. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  31. Fridovich I (1983) Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 23(1):239–257

    Article  CAS  PubMed  Google Scholar 

  32. Karamese M, Aydin H, Gelen V, Sengul E, Karamese SA (2020) The anti-inflammatory, anti-oxidant and protective effects of a probiotic mixture on organ toxicity in a rat model. Future Microbiol 15(6):401–412

    Article  CAS  PubMed  Google Scholar 

  33. Wei C, Liu Y, Jiang A, Wu B (2022) A pharmacovigilance study of the association between tetracyclines and hepatotoxicity based on Food and Drug Administration adverse event reporting system data. Int J Clin Pharm 1–8

  34. Kolaric TO, Nincevic V, Kuna L, Duspara K, Bojanic K, Vukadin S et al (2021) Drug-induced fatty liver disease: pathogenesis and treatment. J Clin Transl Hepatol 9(5):731

    PubMed  PubMed Central  Google Scholar 

  35. Liu L, Wang Y, Zhang J, Wang C, Li Y, Dai W et al (2021) Probiotics in treating with alcoholic liver disease and nonalcoholic fatty liver disease. Food Rev Intl 1–19

  36. Luo M, Yan J, Wu L, Wu J, Chen Z, Jiang J et al (2021) Probiotics alleviated nonalcoholic fatty liver disease in high-fat diet-fed rats via gut microbiota/FXR/FGF15 signaling pathway. J Immunol Res 2021

  37. Zhao H, Zhao C, Dong Y, Zhang M, Wang Y, Li F et al (2015) Inhibition of miR122a by Lactobacillus rhamnosus GG culture supernatant increases intestinal occludin expression and protects mice from alcoholic liver disease. Toxicol Lett 234(3):194–200

    Article  CAS  PubMed  Google Scholar 

  38. Liu Q, Liu Y, Li F, Gu Z, Liu M, Shao T et al (2020) Probiotic culture supernatant improves metabolic function through FGF21-adiponectin pathway in mice. J Nutr Biochem 75:108256

    Article  CAS  PubMed  Google Scholar 

  39. Fredenrich A, Bayer P (2003) Reverse cholesterol transport, high density lipoproteins and HDL cholesterol: recent data. Diabetes Metab 29(3):201–205

    Article  CAS  PubMed  Google Scholar 

  40. Yoon H, Lee Y, Kang HJ, Ju J, Ji Y, Park H et al (2022) Two putative probiotic strains improve diet-induced hypercholesterolemia through modulating intestinal cholesterol uptake and hepatic cholesterol efflux. J Appl Microbiol 132(1):562–570

    Article  CAS  PubMed  Google Scholar 

  41. Kumar M, Verma V, Nagpal R, Kumar A, Gautam SK, Behare PV et al (2011) Effect of probiotic fermented milk and chlorophyllin on gene expressions and genotoxicity during AFB1-induced hepatocellular carcinoma. Gene 490(1–2):54–59

    Article  CAS  PubMed  Google Scholar 

  42. Liong M, Shah N (2005) Production of organic acids from fermentation of mannitol, fructooligosaccharide and inulin by a cholesterol removing Lactobacillus acidophilus strain. J Appl Microbiol 99(4):783–793

    Article  CAS  PubMed  Google Scholar 

  43. Lye H-S, Rusul G, Liong M-T (2010) Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci 93(4):1383–1392

    Article  CAS  PubMed  Google Scholar 

  44. Kim B, Park K-Y, Ji Y, Park S, Holzapfel W, Hyun C-K (2016) Protective effects of Lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice. Biochem Biophys Res Commun 473(2):530–536

    Article  CAS  PubMed  Google Scholar 

  45. Kim S-W, Park K-Y, Kim B, Kim E, Hyun C-K (2013) Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem Biophys Res Commun 431(2):258–263

    Article  CAS  PubMed  Google Scholar 

  46. Linden MA, Fletcher JA, Morris EM, Meers GM, Laughlin MH, Booth FW et al (2015) Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. Med Sci Sports Exerc 47(3):556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kirpich IA, Solovieva NV, Leikhter SN, Shidakova NA, Lebedeva OV, Sidorov PI et al (2008) Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol 42(8):675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Kirpich I, Liu Y, Ma Z, Barve S, McClain CJ et al (2011) Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury. Am J Pathol 179(6):2866–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W (2012) Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol 303(1):32–41

    Article  Google Scholar 

  50. Kang MJ, Shin MS, Park JN, Lee SS (2005) The effects of polyunsaturated: saturated fatty acids ratios and peroxidisability index values of dietary fats on serum lipid profiles and hepatic enzyme activities in rats. Br J Nutr 94(4):526–532

    Article  CAS  PubMed  Google Scholar 

  51. Hallsworth K, Thoma C, Hollingsworth KG, Cassidy S, Anstee QM, Day CP et al (2015) Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci 129(12):1097–1105

    Article  CAS  Google Scholar 

  52. Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50(4–5):279–289

    Article  CAS  PubMed  Google Scholar 

  53. Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C et al (2002) Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol 72(3):215–224

    Article  CAS  PubMed  Google Scholar 

  54. Koc M, Taysi S, Buyukokuroglu ME, Bakan N (2003) Melatonin protects rat liver against irradiation-induced oxidative injury. J Radiat Res 44(3):211–215

    Article  CAS  PubMed  Google Scholar 

  55. Forsyth CB, Farhadi A, Jakate SM, Tang Y, Shaikh M, Keshavarzian A (2009) Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 43(2):163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the experimental design, performed the experiments, and contributed to the data analysis, interpretation of the results, and drafting of the manuscript.

Corresponding author

Correspondence to Hossein Shirvani.

Ethics declarations

Ethics Approval

All the animals were behaved and sacrificed following the National Institutes of Health guide for the care and use of laboratory animals (NIH Publications No. 8023, revised 1978). The experimental procedures were all performed according to the approval of the Ethical Committee of Baqiyatallah University of Medical Sciences, Tehran, Iran (ethical code: IR.BMSU.REC.1396.716).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaei, F., Arabzadeh, E., Mahmoodzadeh Hosseini, H. et al. Exercise Training and Probiotic Lacticaseibacillus rhamnosus GG Reduce Tetracycline-Induced Liver Oxidative Stress and Inflammation in Rats with Hepatic Steatosis. Probiotics & Antimicro. Prot. 15, 1393–1405 (2023). https://doi.org/10.1007/s12602-022-09994-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09994-6

Keywords

Navigation