Skip to main content

Advertisement

Log in

Anti-cancer Properties of Potential Probiotics and Their Cell-free Supernatants for the Prevention of Colorectal Cancer: an In Vitro Study

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

This study aimed to characterize the anti-cancer properties of potential probiotics (Lacticaseibacillus paracasei SD1, Lacticaseibacillus rhamnosus SD4, Lacticaseibacillus rhamnosus SD11, and Lacticaseibacillus rhamnosus GG) and their cell-free supernatants (CFS) for the prevention of colorectal cancer (CRC), which including anti-bacterial and anti-inflammation activities against pathogens associated with CRC (Fusobacterium nucleatum, Porphyromonas gingivalis, ETEC, and Salmonella enterica). The expression of human β-defensin (2–4) and IL-10 after being stimulated with probiotics was also examined. In addition, anti-cancer activity of CFS and probiotic growth under intestinal conditions were determined. An in vitro study was conducted in the Caco-2 and HIEC-6 cells. Results showed that probiotic cells and their CFS displayed different antibacterial activity, and L. rhamnosus SD11 showed the strongest inhibition of the growth of pathogens. Additionally, both probiotic cell walls and their CFS suppressed pro-inflammatory cytokines after being stimulated with pathogens in Caco-2 and HIEC-6 cells. L. paracasei SD1 and L. rhamnosus SD11 showed significantly higher suppression levels than others and also both strains can stimulate highly expression of hBD (2–4) and IL-10. The CFS of L. paracasei SD1 and L. rhamnosus SD11 inhibited significantly high growth of Caco-2 cells but not much in HIEC-6 cells. Furthermore, all probiotics adhered to Caco-2 and HIEC-6 cells, and L. rhamnosus SD4 showed the highest adhesion to both cells. They could survive more than 70% in intestinal conditions. In conclusion, results indicate that potential probiotics tested exhibited various anti-cancer properties, which may be good candidates used as biotherapy for the prevention or to delay the progression of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wong SH, Yu J (2019) Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 16:690–704. https://doi.org/10.1038/s41575-019-0209-8

    Article  CAS  PubMed  Google Scholar 

  2. Wang S, Liu Y, Li J, Zhao L, Yan W, Lin B, Guo X, Wei Y (2021) Fusobacterium nucleatum acts as a pro-carcinogenic bacterium in colorectal cancer: from association to causality. Front Cell Dev Biol 9:1–15. https://doi.org/10.3389/fcell.2021.710165

    Article  Google Scholar 

  3. Hendler R, Zhang Y (2018) Probiotics in the treatment of colorectal cancer. Medicines (Basel) 5:1–14. https://doi.org/10.3390/medicines5030101

    Article  CAS  Google Scholar 

  4. Cheng Y, Ling Z, Li L (2020) The intestinal microbiota and colorectal cancer. Front Immunol 11:1–13. https://doi.org/10.3389/fimmu.2020.615056

    Article  CAS  Google Scholar 

  5. Pahumunto N, Basic A, Östberg AK, Teanpaisan R, Dahlen G (2020) Oral Lactobacillus strains reduce cytotoxicity and cytokine release from peripheral blood mononuclear cells exposed to Aggregatibacter actinomycetemcomitans subtypes In vitro. BMC Microbiol 20:1–12. https://doi.org/10.1186/s12866-020-01959-5

    Article  CAS  Google Scholar 

  6. Pahumunto N, Dahlen G, Teanpaisan R (2021) Evaluation of potential probiotic properties of Lactobacillus and Bacillus strains derived from various sources for their potential use in swine feeding. Probiotics Antimicrob Proteins 19:1–12. https://doi.org/10.1007/s12602-021-09861-w

    Article  CAS  Google Scholar 

  7. Śliżewska K, Markowiak-Kopeć P, Śliżewska W (2020) The role of probiotics in cancer prevention. Cancers (Basel) 13:1–22. https://doi.org/10.3390/cancers13010020

    Article  CAS  Google Scholar 

  8. Yenuganti VR, Yadala R, Azad R, Singh S, Chiluka V, Ahire J, Reddanna P (2021) In vitro evaluation of anticancer effects of different probiotic strains on HCT-116 cell line. J Appl Microbiol 4:1958–1969. https://doi.org/10.1111/jam.15060

    Article  CAS  Google Scholar 

  9. Twetman S, Derawi B, Keller M, Ekstrand K, Yucel-Lindberg T, Stecksen-Blicks C (2009) Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Acta Odontol Scand 67: 19–24. https://doi.org/10.1080/00016350802516170.

  10. Schlee M, Wehkamp J, Altenhoefer A, Oelschlaeger TA, Stange EF, Fellermann K (2007) Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun 75:2399–2407. https://doi.org/10.1128/IAI.01563-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chuah LO, Foo HL, Loh TC, Mohammed Alitheen, NB, Yeap SK, Abdul Mutalib NE, Abdul Rahim R, Yusoff K (2019) Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement Altern Med 19: 1–12. https://doi.org/10.1186/s12906-019-2528-2.

  12. Sophatha B, Piwat S, Teanpaisan R (2020) Adhesion, anti-adhesion and aggregation properties relating to surface charges of selected Lactobacillus strains: study in Caco-2 and H357 cells. Arch Microbiol 202:1349–1357. https://doi.org/10.1007/s00203-020-01846-7

    Article  CAS  PubMed  Google Scholar 

  13. Pahumunto N, Piwat S, Chanvitan S, Ongwande W, Uraipan S, Teanpaisan R (2020) Fermented milk containing a potential probiotic Lactobacillus rhamnosus SD11 with maltitol reduces Streptococcus mutans: a double-blind, randomized, controlled study. J Dent Sci 15:403–410. https://doi.org/10.1016/j.jds.2020.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  14. Manmontri C, Nirunsittirat A, Piwat S, Wattanarat O, Pahumunto N, Makeudom A, Sastraruji T, Krisanaprakornkit S, Teanpaisan R (2020) Reduction of Streptococcus mutans by probiotic milk: a multicenter randomized controlled trial. Clin Oral Investig 24:2363–2374. https://doi.org/10.1007/s00784-019-03095-5

    Article  PubMed  Google Scholar 

  15. Piwat S, Pahumunto N, Srisommai P, Mapaisansin C, Teanpaisan R (2019) Effect of probiotic delivery vehicles for probiotic Lactobacillus rhamnosus SD11 in caries prevention: a clinical study. J Food Process Pres 43: 1–6. https://doi.org/10.1111/jfpp.14147.

  16. Wattanarat O, Nirunsittirat A, Piwat S, Manmontri C, Teanpaisan R, Pahumunto N, Makeudom A, Sastraruji T, Krisanaprakornkit S (2021) Significant elevation of salivary human neutrophil peptides 1–3 levels by probiotic milk in preschool children with severe early childhood caries: a randomized controlled trial. Clin Oral Investig 25:2891–2903. https://doi.org/10.1007/s00784-020-03606-9

    Article  PubMed  Google Scholar 

  17. Teanpaisan R, Dahlén G (2006) Use of polymerase chain reaction techniques and sodium dodecyl sulfate-polyacrylamide gel electrophoresis for differentiation of oral Lactobacillus species. Oral Microbiol Immunol 21:79–83. https://doi.org/10.1111/j.1399-302X.2006.00259.x

    Article  CAS  PubMed  Google Scholar 

  18. Piwat S, Teanpaisan R (2013) 16S rRNA PCR-denaturing gradient gel electrophoresis of oral Lactobacillus casei group and their phenotypic appearances. ISRN Microbiol 23:1–7. https://doi.org/10.1155/2013/342082

    Article  Google Scholar 

  19. Fukushima H, Tsunomori Y, Seki R (2003) Duplex real-time SYBR green PCR assays for detection of 17 species of food- or waterborne pathogens in stools. J Clin Microbiol 41:5134–5146. https://doi.org/10.1128/JCM.41.11.5134-5146.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saygun I, Kubar A, Sahin S, Sener K, Slots J (2008) Quantitative analysis of association between herpesviruses and bacterial pathogens in periodontitis. J Periodontal Res 43:352–359. https://doi.org/10.1111/j.1600-0765.2007.01043.x

    Article  CAS  PubMed  Google Scholar 

  21. Morillo JM, Lau L, Sanz M, Herrera D, Silva A (2003) Quantitative real-time PCR based on single copy gene sequence for detection of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. J Periodontal Res 38:518–524. https://doi.org/10.1034/j.1600-0765.2003.00684.x

    Article  CAS  PubMed  Google Scholar 

  22. Pahumunto N, Chotjumlong P, Makeudom A, Krisanaprakornkit S, Dahlen G, Teanpaisan R (2017) Pro-inflammatory cytokine responses in human gingival epithelial cells after stimulation with cell wall extract of Aggregatibacter actinomycetemcomitans subtypes. Anaerobe 48:103–109. https://doi.org/10.1016/j.anaerobe.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  23. Krisanaprakornkit S, Kimball JR, Wein-berg A, Darveau RP, Bainbridge BW, Dale BA (2000) Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect Immun 68:2907–2915. https://doi.org/10.1128/iai.68.5.2907-2915.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fang XM, Shu Q, Chen QX, Book M, Sahl HG, Hoeft A, Stuber F (2003) Differential expression of α- and β-defensins in human peripheral blood. Eur J Clin Invest 33:82–87. https://doi.org/10.1046/j.1365-2362.2003.01076.x

    Article  CAS  PubMed  Google Scholar 

  25. Ridley ML, Fleskens V, Roberts CA, Lalnunhlimi S, Alnesf A, O’Byrne AM, Steel KJA, Povoleri GAM, Sumner J, Lavender P, Taams LS (2020) IKZF3/Aiolos is associated with but not sufficient for the expression of IL-10 by CD4+ T Cells. J Immunol 204:2940–2948. https://doi.org/10.4049/jimmunol.1901283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Piwat S, Sophatha B, Teanpaisan R (2015) An assessment of adhesion, aggregation and surface charges of Lactobacillus strains derived from the human oral cavity. Lett Appl Microbiol 61:98–105. https://doi.org/10.1111/lam.12434

    Article  CAS  PubMed  Google Scholar 

  27. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an In vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768. https://doi.org/10.1046/j.1365-2672.1998.00407.x

    Article  CAS  PubMed  Google Scholar 

  28. Pumriw S, Luang-In V, Samappito W (2021) Screening of probiotic lactic acid bacteria isolated from fermented pak-sian for use as a starter culture. Curr Microbiol 78:2695–2707. https://doi.org/10.1007/s00284-021-02521-w

    Article  CAS  PubMed  Google Scholar 

  29. Eaden JA, Abrams KR, Mayberry JF (2001) The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48:526–535. https://doi.org/10.1136/gut.48.4.526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Canavan C, Abrams KR, Mayberry J (2006) Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Aliment Pharmacol Ther 23:1097–1104. https://doi.org/10.1111/j.1365-2036.2006.02854.x

    Article  CAS  PubMed  Google Scholar 

  31. Wu Y, Zhu C, Chen Z, Chen Z, Zhang W, Ma X, Wang L, Yang X, Jiang Z (2016) Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells. Vet Immunol Immunopathol 172:55–63. https://doi.org/10.1016/j.vetimm.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  32. Oh NS, Joung JY, Lee JY, Kim Y (2018) Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces. PLoS ONE 13:1–15. https://doi.org/10.1371/journal.pone.0192021

    Article  CAS  Google Scholar 

  33. De Marco S, Sichetti M, Muradyan D, Piccioni M, Traina G, Pagiotti R, Pietrella D (2018) Probiotic cell-free supernatants exhibited anti-Inflammatory and antioxidant Activity on human gut epithelial cells and macrophages stimulated with LPS. Evid Based Complement Alternat 8:1–12. https://doi.org/10.1155/2018/1756308

    Article  CAS  Google Scholar 

  34. Bermudez-Brito M, Muñoz-Quezada S, Gomez-Llorente C, Matencio E, Bernal MJ, Romero F, Gil A (2013) Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation. PLoS ONE 8:1–13. https://doi.org/10.1371/journal.pone.0059370

    Article  CAS  Google Scholar 

  35. Fusco A, Savio V, Cammarota M, Alfano A, Schiraldi C, Donnarumma G (2017) Beta-defensin-2 and beta-defensin-3 reduce intestinal damage caused by Salmonella Typhimurium modulating the expression of cytokines and enhancing the probiotic activity of Enterococcus faecium. J Immunol Res 1–9. https://doi.org/10.1155/2017/6976935

  36. Shyu PT Oyong GG, Cabrera EC (2014) Cytotoxicity of probiotics from Philippine commercial dairy products on cancer cells and the effect on expression of cfos and cjun early apoptotic-promoting genes and Interleukin-1β and tumor necrosis factor-α proinflammatory cytokine genes. Biomed Res Int 1–10. https://doi.org/10.1155/2014/491740

  37. Baskić D, Popović S, Ristić P, Arsenijević NN (2006) Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol Int 30:924–932. https://doi.org/10.1016/j.cellbi.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  38. Fedi A, Vitale C, Ponschin G, Ayehunie S, Fato M, Scaglione S (2021) In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: a systematic review. J Control Release 335:247–268. https://doi.org/10.1016/j.jconrel.2021.05.028

    Article  CAS  PubMed  Google Scholar 

  39. Gopal PK, Prasad J, Smart J, Gill HS (2001) In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol 67:207–216. https://doi.org/10.1016/s0168-1605(01)00440-8

    Article  CAS  PubMed  Google Scholar 

  40. Jacobsen CN, Rosenfeldt-Nielsen V, Hayford AE, Moller PL, Michaelsen KF, Parregaard A, Sandstrom B, Tvede M, Jakobsen M (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by In vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65:4949–4956. https://doi.org/10.1128/AEM.65.11.4949-4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuksekdag ZN, Aslim B (2010) Assessment of potential probiotic and starter properties of Pediococcus spp. isolated from Turkish-type fermented sausages (sucuk). J Microbiol Biotechnol 20:161–168. https://doi.org/10.4014/jmb.0904.04019.

  42. Morelli L (2000) In vitro selection of probiotic lactobacilli: a critical appraisal. Curr Issues Intestinal Microbiol 1:59–67 (PMID: 11709870)

    CAS  Google Scholar 

  43. Fernández M, Boris S, Barbés C (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol 94:449–455. https://doi.org/10.1046/j.1365-2672.2003.01850.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Oral Microbiology Laboratory, Faculty of Dentistry, Prince of Songkla University (Hat-Yai, Thailand), for facilitating all equipment.

Funding

This work has received funding from the Health Systems Research Institute (HSRI 64–007).

Author information

Authors and Affiliations

Authors

Contributions

NP and RT were involved in article’s conception and design, participated in conducting the experiments, drafted the manuscript, revised and provided final approval of the version to be published.

Corresponding author

Correspondence to Nuntiya Pahumunto.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahumunto, N., Teanpaisan, R. Anti-cancer Properties of Potential Probiotics and Their Cell-free Supernatants for the Prevention of Colorectal Cancer: an In Vitro Study. Probiotics & Antimicro. Prot. 15, 1137–1150 (2023). https://doi.org/10.1007/s12602-022-09972-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09972-y

Keywords

Navigation