Skip to main content

Advertisement

Log in

Enumeration of Probiotic Strain Lacticaseibacillus rhamnosus GG (ATCC 53103) Using Viability Real-time PCR

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Probiotic health benefits are strain specific and are dose dependent. Hence, administering the correct strains, at the recommended doses is essential to achieve probiotic health benefits. Reliable methods are needed to facilitate probiotic strain identification and enumeration. Plate count methods are the most commonly used methods for probiotic enumeration. However, these methods are time-consuming, laborious, highly variable, and non-specific. Here, we developed a real-time PCR method for enumeration of a commonly used strain, Lacticaseibacillus rhamnosus GG. The method utilizes PMAxx as a viability dye to enumerate viable cells only. Optimization of viability treatment showed that PMAxx at a final concentration of 50 μM was effective in inactivating DNA from dead cells, and that bead beating for 5 min at 3000 rpm was effective in liberating DNA. The assay demonstrated high efficiency between 93 and 102%, with R2 values > 0.99. The assay showed high precision with relative standard deviation (RSD%) below 2.3%. Assay performance was compared to a plate count method in which there was a strong correlation between both methods (Pearson r = 0.8443). This method offers a 10 × shorter time for results and a higher precision compared to plate count methods. Furthermore, this method enables specific enumeration of L. rhamnosus GG in multi-strain products, which is not possible to achieve using plate count methods. This novel method facilitates faster and more accurate enumeration of L. rhamnosus GG as a raw ingredient as well as in finished products which enables better quality assurance and efficacy of probiotics for consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

All data generated or analyzed during this study are included in this published article.

References

  1. Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A (2017) Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 61(1):1600240. https://doi.org/10.1002/mnfr.201600240

    Article  CAS  Google Scholar 

  2. Tripathi MK, Giri SK (2014) Probiotic functional foods: survival of probiotics during processing and storage. J Funct Foods 9:225–241. https://doi.org/10.1016/j.jff.2014.04.030

    Article  CAS  Google Scholar 

  3. Kolaček S, Hojsak I, Berni Canani R, Guarino A, Indrio F, Orel R, Pot B, Shamir R, Szajewska H, Vandenplas Y, van Goudoever J, Weizman Z, ESPGHAN-Working-Group-for-Probiotics-and-Prebiotics (2017) Commercial probiotic products: a call for improved quality control A position paper by the ESPGHAN Working Group for Probiotics and Prebiotics. J Pediatr Gastroenterol Nutr 65(1):117–124. https://doi.org/10.1097/MPG.0000000000001603

    Article  PubMed  Google Scholar 

  4. FAO/WHO (2002) Joint FAO/WHO Working Group. Guidelines for the evaluation of probiotics in food: report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada. http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed 6 Jul 2018

  5. Health-Canada (2009) Accepted claims about the nature of probiotic microorganisms in food, Ottawa, Ontario, Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/food-labelling/health-claims/accepted-claims-about-nature-probiotic-microorganisms-food.html. Accessed 6 Jul 2018

  6. Health-Canada (2009) Guidance document—the use of probiotic microorganisms in food, Ottawa, Ontario, Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/legislation-guidelines/guidance-documents/guidance-document-use-probiotic-microorganisms-food-2009.html. Accessed 6 Jul 2018

  7. Health-Canada (2015) Natural health product - probiotics, Ottawa, Ontario, Canada. http://webprod.hc-sc.gc.ca/nhpid-bdipsn/atReq.do?atid=probio&lang=eng. Accessed 6 Jul 2018

  8. Davis C (2014) Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J Microbiol Methods 103:9–17. https://doi.org/10.1016/j.mimet.2014.04.012

    Article  CAS  PubMed  Google Scholar 

  9. Hill HW, Slack FH (1904) Bacterial counts of Boston’s milk supply. Boston Med Surg J 151(26):708–711. https://doi.org/10.1056/NEJM190412291512604

    Article  Google Scholar 

  10. Hill H (1908) The mathematics of the bacterial count. Am J Hyg 18(3):300

    CAS  Google Scholar 

  11. Breed RS, Dotterrer WD (1916) The number of colonies allowable on satisfactory agar plates. J Bacteriol 1(3):321–331. https://doi.org/10.1128/jb.1.3.321-331.1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hansen SJZ, Morovic W, DeMeules M, Stahl B, Sindelar CW (2018) Absolute enumeration of probiotic strains Lactobacillus acidophilus NCFM® and Bifidobacterium animalis subsp. lactis Bl-04® via chip-based digital PCR. Front Microbiol 9:704. https://doi.org/10.3389/fmicb.2018.00704

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jackson SA, Schoeni JL, Vegge C, Pane M, Stahl B, Bradley M, Goldman VS, Burguière P, Atwater JB, Sanders ME (2019) Improving end-user trust in the quality of commercial probiotic products. Front Microbiol 10:739–739. https://doi.org/10.3389/fmicb.2019.00739

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chiron C, Tompkins TA, Burguière P (2018) Flow cytometry: a versatile technology for specific quantification and viability assessment of micro-organisms in multistrain probiotic products. J Appl Microbiol 124(2):572–584. https://doi.org/10.1111/jam.13666

    Article  CAS  PubMed  Google Scholar 

  15. Wilkinson MG (2018) Flow cytometry as a potential method of measuring bacterial viability in probiotic products: a review. Trends Food Sci Technol 78:1–10. https://doi.org/10.1016/j.tifs.2018.05.006

    Article  CAS  Google Scholar 

  16. García-Cayuela T, Tabasco R, Peláez C, Requena T (2009) Simultaneous detection and enumeration of viable lactic acid bacteria and bifidobacteria in fermented milk by using propidium monoazide and real-time PCR. Int Dairy J 19(6):405–409. https://doi.org/10.1016/j.idairyj.2009.02.001

    Article  CAS  Google Scholar 

  17. Kramer M, Obermajer N, Bogovič Matijašić B, Rogelj I, Kmetec V (2009) Quantification of live and dead probiotic bacteria in lyophilised product by real-time PCR and by flow cytometry. Appl Environ Microbiol 84(6):1137–1147. https://doi.org/10.1007/s00253-009-2068-7

    Article  CAS  Google Scholar 

  18. Fittipaldi M, Nocker A, Codony F (2012) Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. J Microbiol Methods 91(2):276–289. https://doi.org/10.1016/j.mimet.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  19. Shehata HR, Newmaster SG (2020) A validated real-time PCR method for the specific identification of probiotic strain Lactobacillus rhamnosus GG (ATCC 53103). J AOAC Int 103(6):1604–1609. https://doi.org/10.1093/jaoacint/qsaa063

    Article  PubMed  Google Scholar 

  20. De Keersmaecker SC, Verhoeven TL, Desair J, Marchal K, Vanderleyden J, Nagy I (2006) Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol Lett 259(1):89–96. https://doi.org/10.1111/j.1574-6968.2006.00250.x

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Zhang L, Du M, Yi H, Guo C, Tuo Y, Han X, Li J, Zhang L, Yang L (2011) Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food. Microbiol Res 167(1):27–31. https://doi.org/10.1016/j.micres.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  22. Silva M, Jacobus N, Deneke C, Gorbach S (1987) Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother 31(8):1231–1233. https://doi.org/10.1128/aac.31.8.1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siitonen S, Vapaatalo H, Salminen S, Gordin A, Saxelin M, Wikberg R, Kirkkola A-L (1990) Effect of Lactobacillus GG yoghurt in prevention of antibiotic associated diarrhoea. Ann Med 22(1):57–59. https://doi.org/10.3109/07853899009147243

    Article  CAS  PubMed  Google Scholar 

  24. Cremonini F, Di Caro S, Covino M, Armuzzi A, Gabrielli M, Santarelli L, Nista EC, Cammarota G, Gasbarrini G, Gasbarrini A (2002) Effect of different probiotic preparations on anti-Helicobacter pylori therapy-related side effects: a parallel group, triple blind, placebo-controlled study. Am J Gastroenterol 97(11):2744–2749. https://doi.org/10.1111/j.1572-0241.2002.07063.x

    Article  PubMed  Google Scholar 

  25. Kawase M, He F, Kubota A, Harata G, Hiramatsu M (2007) Orally administrated Lactobacillus gasseri TMC0356 and Lactobacillus GG alleviated nasal blockage of guinea pig with allergic rhinitis. Microbiol Immunol 51(11):1109–1114. https://doi.org/10.1111/j.1348-0421.2007.tb04006.x

    Article  CAS  PubMed  Google Scholar 

  26. Flach J, van der Waal M, Kardinaal A, Schloesser J, Ruijschop R, Claassen E (2018) Probiotic research priorities for the healthy adult population: a review on the health benefits of Lactobacillus rhamnosus GG and Bifidobacterium animalis subspecies lactis BB-12. Cogent Food Agric 4(1):1452839. https://doi.org/10.1080/23311932.2018.1452839

    Article  Google Scholar 

  27. Donkor ON, Ravikumar M, Proudfoot O, Day SL, Apostolopoulos V, Paukovics G, Vasiljevic T, Nutt SL, Gill H (2012) Cytokine profile and induction of T helper type 17 and regulatory T cells by human peripheral mononuclear cells after microbial exposure. Clin Exp Immunol 167(2):282–295. https://doi.org/10.1111/j.1365-2249.2011.04496.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yau YF, El-Nezami H, Galano J-M, Kundi ZM, Durand T, Lee JC-Y (2020) Lactobacillus rhamnosus GG and oat beta-glucan regulated fatty acid profiles along the gut-liver-brain axis of mice fed with high fat diet and demonstrated antioxidant and anti-inflammatory potentials. Mol Nutr Food Res 64(18):2000566. https://doi.org/10.1002/mnfr.202000566

    Article  CAS  Google Scholar 

  29. Orlando A, Linsalata M, Russo F (2016) Antiproliferative effects on colon adenocarcinoma cells induced by co-administration of vitamin K1 and Lactobacillus rhamnosus GG. Int J Oncol 48(6):2629–2638. https://doi.org/10.3892/ijo.2016.3463

    Article  CAS  PubMed  Google Scholar 

  30. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx AP, Lebeer S (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci USA 106(40):17193–17198. https://doi.org/10.1073/pnas.0908876106

    Article  PubMed  PubMed Central  Google Scholar 

  31. Velez MP, Petrova MI, Lebeer S, Verhoeven TL, Claes I, Lambrichts I, Tynkkynen S, Vanderleyden J, De Keersmaecker SC (2010) Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation. FEMS Immunol Med Microbiol 59(3):386–398. https://doi.org/10.1111/j.1574-695X.2010.00680.x

    Article  CAS  PubMed  Google Scholar 

  32. Shehata HR, Ragupathy S, Shanmughanandhan D, Kesanakurti P, Ehlinger TM, Newmaster SG (2019) Guidelines for validation of qualitative real-time PCR methods for molecular diagnostic identification of probiotics. J AOAC Int 102:1774–1778. https://doi.org/10.5740/jaoacint.18-0320microorganisms

    Article  CAS  PubMed  Google Scholar 

  33. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR Experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  34. Broeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, Roosens N, Morisset D (2014) Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol 37(2):115–126. https://doi.org/10.1016/j.tifs.2014.03.008

    Article  CAS  Google Scholar 

  35. Gobert G, Cotillard A, Fourmestraux C, Pruvost L, Miguet J, Boyer M (2018) Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples. J Microbiol Methods 148:64–73. https://doi.org/10.1016/j.mimet.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  36. Herbel S, Lauzat B, von Nickisch-Rosenegk M, Kuhn M, Murugaiyan J, Wieler L, Guenther S (2013) Species-specific quantification of probiotic lactobacilli in yoghurt by quantitative real-time PCR. J Appl Microbiol 115(6):1402–1410. https://doi.org/10.1111/jam.12341

    Article  CAS  PubMed  Google Scholar 

  37. Kramer M, Obermajer N, Matijašić BB, Rogelj I, Kmetec V (2009) Quantification of live and dead probiotic bacteria in lyophilised product by real-time PCR and by flow cytometry. Appl Environ Microbiol 84(6):1137–1147. https://doi.org/10.1007/s00253-009-2068-7

    Article  CAS  Google Scholar 

  38. Hansen SJZ, Tang P, Kiefer A, Galles K, Wong C, Morovic W (2020) Droplet digital PCR is an improved alternative method for high-quality enumeration of viable probiotic strains. Front Microbiol 10:3025. https://doi.org/10.3389/fmicb.2019.03025

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  40. Binda S, Hill C, Johansen E, Obis D, Pot B, Sanders ME, Tremblay A, Ouwehand AC (2020) Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Front Microbiol 11:1662. https://doi.org/10.3389/fmicb.2020.01662

    Article  PubMed  PubMed Central  Google Scholar 

  41. Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A (2018) Postbiotics: an evolving term within the functional foods field. Trends Food Sci Technol 75:105–114. https://doi.org/10.1016/j.tifs.2018.03.009

    Article  CAS  Google Scholar 

  42. Kiefer A, Tang P, Arndt S, Fallico V, Wong C (2020) Optimization of viability treatment essential for accurate droplet digital PCR enumeration of probiotics. Front Microbiol 11:1811. https://doi.org/10.3389/fmicb.2020.01811

    Article  PubMed  PubMed Central  Google Scholar 

  43. Scariot MC, Venturelli GL, Prudêncio ES, Arisi ACM (2018) Quantification of Lactobacillus paracasei viable cells in probiotic yoghurt by propidium monoazide combined with quantitative PCR. Int J Food Microbiol 264:1–7. https://doi.org/10.1016/j.ijfoodmicro.2017.10.021

    Article  CAS  PubMed  Google Scholar 

  44. Mumy KL, Findlay RH (2004) Convenient determination of DNA extraction efficiency using an external DNA recovery standard and quantitative-competitive PCR. J Microbiol Methods 57(2):259–268. https://doi.org/10.1016/j.mimet.2004.01.013

    Article  CAS  PubMed  Google Scholar 

  45. Kralik P, Ricchi M (2017) A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol 8:108. https://doi.org/10.3389/fmicb.2017.00108

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73(2):169–187. https://doi.org/10.1023/A:1000664013047

    Article  CAS  PubMed  Google Scholar 

  47. Lahtinen SJ, Gueimonde M, Ouwehand AC, Reinikainen JP, Salminen SJ (2006) Comparison of four methods to enumerate probiotic bifidobacteria in a fermented food product. Food Microbiol 23(6):571–577. https://doi.org/10.1016/j.fm.2005.09.001

    Article  PubMed  Google Scholar 

  48. Gorsuch J, LeSaint D, VanderKelen J, Buckman D, Kitts CL (2019) A comparison of methods for enumerating bacteria in direct fed microbials for animal feed. J Microbiol Methods 160:124–129. https://doi.org/10.1016/j.mimet.2019.04.003

    Article  CAS  PubMed  Google Scholar 

  49. Shehata HR, Newmaster SG (2020) Fraud in probiotic products. In: Hellberg RS, Everstine K, Sklare SA (eds) Food fraud: a global threat with public health and economic consequences. 1st Edition edn. Academic Press/Elsevier, San Diego, pp 361–370. https://doi.org/10.1016/B978-0-12-817242-1.00011-7

  50. Fasoli S, Marzotto M, Rizzotti L, Rossi F, Dellaglio F, Torriani S (2003) Bacterial composition of commercial probiotic products as evaluated by PCR-DGGE analysis. Int J Food Microbiol 82(1):59–70. https://doi.org/10.1016/s0168-1605(02)00259-3

    Article  CAS  PubMed  Google Scholar 

  51. Drago L, Rodighiero V, Celeste T, Rovetto L, De Vecchi E (2010) Microbiological evaluation of commercial probiotic products available in the USA in 2009. J Chemother 22(6):373–377. https://doi.org/10.1179/joc.2010.22.6.373

    Article  CAS  PubMed  Google Scholar 

  52. Chen T, Wu Q, Zhou H, Deng K, Wang X, Meng F, Yang S, Wang X, Shah NP, Wei H (2017) Assessment of commercial probiotic products in China for labelling accuracy and probiotic characterisation of selected isolates. Int J Dairy Technol 70(1):119–126. https://doi.org/10.1111/1471-0307.12331

    Article  CAS  Google Scholar 

  53. Morovic W, Hibberd AA, Zabel B, Barrangou R, Stahl B (2016) Genotyping by PCR and high-throughput sequencing of commercial probiotic products reveals composition biases. Front Microbiol 7:1747. https://doi.org/10.3389/fmicb.2016.01747

    Article  PubMed  PubMed Central  Google Scholar 

  54. Patro JN, Ramachandran P, Barnaba T, Mammel MK, Lewis JL, Elkins CA (2016) Culture-independent metagenomic surveillance of commercially available probiotics with high-throughput next-generation sequencing. MSphere 1(2):e00057-e116. https://doi.org/10.1128/mSphere.00057-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shehata HR, Newmaster SG (2020) Combined targeted and non-targeted PCR based methods reveal high levels of compliance in probiotic products sold as dietary supplements in USA and Canada. Front Microbiol 11:1095. https://doi.org/10.3389/fmicb.2020.01095

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank UAS Labs, International Flavors & Fragrances Inc., Nature’s Way Brands, and Lallemand Health Solutions for kindly providing the reference materials.

Funding

This study was supported by the Natural Health Product Research Alliance (NHPRA), University of Guelph.

Author information

Authors and Affiliations

Authors

Contributions

HS designed the study, carried out the experiments, analyzed the data, and wrote the manuscript. SN helped to design the study, facilitated sample acquisition, and edited the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Hanan R. Shehata.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehata, H.R., Newmaster, S.G. Enumeration of Probiotic Strain Lacticaseibacillus rhamnosus GG (ATCC 53103) Using Viability Real-time PCR. Probiotics & Antimicro. Prot. 13, 1611–1620 (2021). https://doi.org/10.1007/s12602-021-09849-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09849-6

Keywords

Navigation