Skip to main content

Advertisement

Log in

Identification and Characterization of Two Defensins from Capsicum annuum Fruits that Exhibit Antimicrobial Activity

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Scientific advances have not been enough to combat the growing resistance to antimicrobial medicines. Antimicrobial peptides (AMPs) are effector molecules of the innate immune defense system in plants and could provide an important source of new antimicrobial drugs. The aim of this work was to extract, purify, characterize, and evaluate the antifungal activities present in fractions obtained from Capsicum annum fruits through reversed-phase chromatography. The fractions named F2 and F3 presented the highest inhibitory activity against Candida and Mycobacterium tuberculosis species. In addition, we identified two sequences of AMPs in the F2 and F3 fractions through mass spectrometry that showed similarity to an already well-characterized family of plant defensins. A plasma membrane permeabilization assay demonstrated that the peptides present in F2, F3, and F4 fractions induced changes in the membrane of some yeast strains, culminating in permeabilization. The production of reactive oxygen species was induced by the fractions in some yeast strains. Fractions F2, F3, and F4 also did not show toxicity in macrophage or monocyte cultures. In conclusion, the obtained data demonstrate that the AMPs, especially those present in the fractions F2 and F3, are promising antimicrobial agents that may be useful to enhance the development of new therapeutic agents for the treatment of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. https://doi.org/10.1038/415389a

    Article  CAS  PubMed  Google Scholar 

  2. Castro MS, Fontes W (2005) Plant defense and antimicrobial peptides. Protein Pept Lett 12:11–16. https://doi.org/10.2174/0929866053405832

    Article  Google Scholar 

  3. Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6:1–4. https://doi.org/10.1371/journal.ppat.1001067

    Article  CAS  Google Scholar 

  4. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472. https://doi.org/10.1016/j.tibtech.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  5. Thevissen K, Terras FRG, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458. https://doi.org/10.1128/AEM.65.12.5451-5458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375. https://doi.org/10.1016/j.bbamem.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  7. Broekaert WF, Cammue BPA, Bolle MFC et al (1997) Antimicrobial peptides from plants. Crit Rev Plant Sci 16:297–323. https://doi.org/10.1080/07352689709701952

    Article  CAS  Google Scholar 

  8. Sels J, Mathys J, De Coninck BMA et al (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950. https://doi.org/10.1016/j.plaphy.2008.06.011

    Article  CAS  PubMed  Google Scholar 

  9. Benko-Iseppon AM, Galdino SL, Calsa T Jr et al (2010) Overview on plant antimicrobial peptides. Curr Protein Pept Sci 11:181–188. https://doi.org/10.2174/138920310791112075

    Article  CAS  PubMed  Google Scholar 

  10. Cornet B, Bonmatin J-M, Hetru C, Hoffmann JA, Ptak M, Vovelle F (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3:435–448. https://doi.org/10.1016/S0969-2126(01)00177-0

    Article  CAS  PubMed  Google Scholar 

  11. Carvalho AO, Gomes VM (2009) Plant defensins-prospects for the biological functions and biotechnological properties. Peptides 30:1007–1020. https://doi.org/10.1016/j.peptides.2009.01.018

    Article  CAS  Google Scholar 

  12. Rogozhin E, Ryazantsev D, Smirnov A, Zavriev S (2018) Primary structure analysis of antifungal peptides from cultivated and wild cereals. Plants 7:1–15. https://doi.org/10.3390/plants7030074

    Article  CAS  Google Scholar 

  13. Vriens K, Cammue BPA, Thevissen K (2014) Antifungal plant defensins: mechanisms of action and production. Molecules 19:12280–12303. https://doi.org/10.3390/molecules190812280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rigano MM, Romanelli A, Fulgione A, Nocerino N, D'Agostino N, Avitabile C, Frusciante L, Barone A, Capuano F, Capparelli R (2012) A novel synthetic peptide from a tomato defensin exhibits antibacterial activities against Helicobacter pylori. J Pept Sci 18:755–762. https://doi.org/10.1002/psc.2462

    Article  CAS  PubMed  Google Scholar 

  15. do Nascimento VV, Mello EO, Carvalho LP et al (2015) PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis. Biosci Rep 35:1–7. https://doi.org/10.1042/BSR20150060

    Article  CAS  Google Scholar 

  16. Scorzoni L, de Paula e Silva ACA, Marcos CM et al (2017) Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol 08:1–23. https://doi.org/10.3389/fmicb.2017.00036

    Article  Google Scholar 

  17. Zager EM, McNerney R (2008) Multidrug-resistant tuberculosis. BMC Infect Dis 8:1–5. https://doi.org/10.1186/1471-2334-8-10

    Article  Google Scholar 

  18. Khan FA, Mahmood T, Ali M, Saeed A, Maalik A (2014) Pharmacological importance of an ethnobotanical plant: Capsicum annuum L. Nat Prod Res 28:1267–1274. https://doi.org/10.1080/14786419.2014.895723

    Article  CAS  PubMed  Google Scholar 

  19. Guillén-Chable F, Arenas-Sosa I, Islas-Flores I, Corzo G, Martinez-Liu C, Estrada G (2017) Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus. Protein Expr Purif 136:45–51. https://doi.org/10.1016/j.pep.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  20. Pereira LS, do Nascimento VV, Ribeiro SFF et al (2018) Characterization of Capsicum annuum L. leaf and root antimicrobial peptides: antimicrobial activity against phytopathogenic microorganisms. Acta Physiol Plant 40:1–15. https://doi.org/10.1007/s11738-018-2685-9

    Article  CAS  Google Scholar 

  21. Taveira GB, da Motta OV, Machado OLT et al (2014) Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Pept Sci 102:30–39. https://doi.org/10.1002/bip.22351

    Article  CAS  Google Scholar 

  22. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379. https://doi.org/10.1016/0003-2697(87)90587-2

    Article  PubMed  Google Scholar 

  23. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658. https://doi.org/10.1021/ac0341261

    Article  CAS  PubMed  Google Scholar 

  24. Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J (1990) An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett 69:55–60. https://doi.org/10.1016/0378-1097(90)90412-J

    Article  CAS  Google Scholar 

  25. Mello EO, Ribeiro SFF, Carvalho AO, Santos IS, da Cunha M, Santa-Catarina C, Gomes VM (2011) Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr Microbiol 62:1209–1217. https://doi.org/10.1007/s00284-010-9847-3

    Article  CAS  PubMed  Google Scholar 

  26. Moodley S, Koorbanally NA, Moodley T, Ramjugernath D, Pillay M (2014) The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay is a rapid, cheap, screening test for the in vitro anti-tuberculous activity of chalcones. J Microbiol Methods 104:72–78. https://doi.org/10.1016/j.mimet.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  27. Ventura TLB, Calixto SD, Abrahim-Vieira BA et al (2015) Antimycobacterial and anti-inflammatory activities of substituted chalcones focusing on an anti-tuberculosis dual treatment approach. Molecules 20:8072–8093. https://doi.org/10.3390/molecules20058072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  29. Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A (2014) Plant antimicrobial peptides. Folia Microbiol 59:181–196. https://doi.org/10.1007/s12223-013-0280-4

    Article  CAS  Google Scholar 

  30. Holaskova E, Galuszka P, Frebort I, Oz MT (2015) Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv 33:1005–1023. https://doi.org/10.1016/J.BIOTECHADV.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  31. Tam JP, Wang S, Wong KH, Tan WL (2015) Antimicrobial peptides from plants. Pharmaceuticals 8:711–757. https://doi.org/10.3390/ph8040711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JK, Sørensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278. https://doi.org/10.1038/ng.2877

    Article  CAS  PubMed  Google Scholar 

  33. Reddy UK, Almeida A, Abburi VL et al (2014) Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L. collections. PLoS One 9:1–10. https://doi.org/10.1371/journal.pone.0086393

    Article  CAS  Google Scholar 

  34. Diz MS, Carvalho AO, Ribeiro SFF, da Cunha M, Beltramini L, Rodrigues R, Nascimento VV, Machado OL, Gomes VM (2011) Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol Plant 142:233–246. https://doi.org/10.1111/j.1399-3054.2011.01464.x

    Article  CAS  PubMed  Google Scholar 

  35. Dias GB, Gomes VM, Pereira UZ, Ribeiro SFF, Carvalho AO, Rodrigues R, Machado OLT, Fernandes KVS, Ferreira ATS, Perales J, da Cunha M (2013) Isolation, characterization and antifungal activity of proteinase inhibitors from Capsicum chinense Jacq. seeds. Protein J 32:15–26. https://doi.org/10.1007/s10930-012-9456-z

    Article  CAS  PubMed  Google Scholar 

  36. Ribeiro SFF, Carvalho AO, Da Cunha M et al (2007) Isolation and characterization of novel peptides from chilli pepper seeds: antimicrobial activities against pathogenic yeasts. Toxicon 50:600–611. https://doi.org/10.1016/j.toxicon.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  37. Taveira GB, Carvalho AO, Rodrigues R, Trindade FG, da Cunha M, Gomes VM (2016) Thionin-like peptide from Capsicum annuum fruits: mechanism of action and synergism with fluconazole against Candida species. BMC Microbiol 16:1–13. https://doi.org/10.1186/s12866-016-0626-6

    Article  CAS  Google Scholar 

  38. Cai K, Wang J, Wang M, Zhang H, Wang S, Zhao Y (2016) Molecular cloning, recombinant expression, and antifungal functional characterization of the lipid transfer protein from Panax ginseng. Biotechnol Lett 38:1229–1235. https://doi.org/10.1007/s10529-016-2100-9

    Article  CAS  PubMed  Google Scholar 

  39. Kirubakaran SI, Begum SM, Ulaganathan K, Sakthivel N (2008) Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol Biochem 46:918–927. https://doi.org/10.1016/j.plaphy.2008.05.007

    Article  CAS  PubMed  Google Scholar 

  40. Ribeiro SFF, Silva MS, Da Cunha M et al (2012) Capsicum annuum L. trypsin inhibitor as a template scaffold for new drug development against pathogenic yeast. Antonie Van Leeuwenhoek 101:657–670. https://doi.org/10.1007/s10482-011-9683-x

    Article  CAS  PubMed  Google Scholar 

  41. Lay FT, Anderson MA (2005) Defensins–components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101. https://doi.org/10.2174/1389203053027575

    Article  CAS  PubMed  Google Scholar 

  42. Shafee TMA, Lay FT, Hulett MD, Anderson MA (2016) The defensins consist of two independent, convergent protein superfamilies. Mol Biol Evol 33:2345–2356. https://doi.org/10.1093/molbev/msw106

    Article  CAS  PubMed  Google Scholar 

  43. Cools TL, Struyfs C, Cammue BP, Thevissen K (2017) Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol 12:441–454. https://doi.org/10.2217/fmb-2016-0181

    Article  CAS  PubMed  Google Scholar 

  44. Carvalho AO, Gomes VM (2011) Plant defensins and defensin-like peptides-biological activities and biotechnological applications. Curr Pharm Des 17:4270–4293. https://doi.org/10.2174/138161211798999447

    Article  CAS  Google Scholar 

  45. Thevissen K, Kristensen HH, Thomma BPHJ et al (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 12:966–971. https://doi.org/10.1016/j.drudis.2007.07.016

    Article  CAS  PubMed  Google Scholar 

  46. Stotz HU, Thomson JG, Wang Y (2009) Plant defensins: defense, development and application. Plant Signal Behav 4:1010–1012. https://doi.org/10.4161/psb.4.11.9755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vieira MEB, Vasconcelos IM, Machado OLT et al (2015) Isolation, characterization and mechanism of action of an antimicrobial peptide from Lecythis pisonis seeds with inhibitory activity against Candida albicans. Acta Biochim Biophys Sin 47:716–729. https://doi.org/10.1093/abbs/gmv071

    Article  CAS  PubMed  Google Scholar 

  48. Hayes BME, Bleackley MR, Anderson MA, van der Weerden NL (2018) The plant defensin nad1 enters the cytoplasm of Candida albicans via endocytosis. J Fungi 4:1–15. https://doi.org/10.3390/jof4010020

    Article  CAS  Google Scholar 

  49. Games PD, dos Santos IS, Mello EO et al (2008) Isolation, characterization and cloning of a cDNA encoding a new antifungal defensin from Phaseolus vulgaris L. seeds. Peptides 29:2090–2100. https://doi.org/10.1016/j.peptides.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  50. Soares JR, Melo EJT, da Cunha M et al (2017) Interaction between the plant ApDef1 defensin and Saccharomyces cerevisiae results in yeast death through a cell cycle- and caspase-dependent process occurring via uncontrolled oxidative stress. Biochim Biophys Acta Gen Subj 1861:3429–3443. https://doi.org/10.1016/j.bbagen.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  51. Yeaman MR, Büttner S, Thevissen K (2018) Regulated cell death as a therapeutic target for novel antifungal peptides and biologics. Oxidative Med Cell Longev 2018:1–20. https://doi.org/10.1155/2018/5473817

    Article  CAS  Google Scholar 

  52. Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28:1387–1404. https://doi.org/10.1016/S0891-5849(00)00224-0

    Article  CAS  PubMed  Google Scholar 

  53. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343. https://doi.org/10.1016/j.freeradbiomed.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  54. Kulkarni MM, McMaster WR, Kamysz W, McGwire BS (2009) Antimicrobial peptide-induced apoptotic death of leishmania results from calcium-dependent, caspase-independent mitochondrial toxicity. J Biol Chem 284:15496–15504. https://doi.org/10.1074/jbc.M809079200

  55. Aerts AM, François IEJA, Meert EMK et al (2007) The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13:243–247. https://doi.org/10.1159/000104753

  56. Orme IM (2011) Development of new vaccines and drugs for TB: limitations and potential strategic errors. Future Microbiol 6:161–177. https://doi.org/10.2217/fmb.10.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kapoor R, Eimerman PR, Hardy JW, Cirillo JD, Contag CH, Barron AE (2011) Efficacy of antimicrobial peptoids against Mycobacterium tuberculosis. Antimicrob Agents Chemother 55:3058–3062. https://doi.org/10.1128/AAC.01667-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arranz-Trullén J, Lu L, Pulido D et al (2017) Host antimicrobial peptides: the promise of new treatment strategies against tuberculosis. Front Immunol 8:1–17. https://doi.org/10.3389/fimmu.2017.01499

    Article  CAS  Google Scholar 

  59. Ribeiro SCM, Gomes LL, Amaral EP, Andrade MR, Almeida FM, Rezende AL, Lanes VR, Carvalho EC, Suffys PN, Mokrousov I, Lasunskaia EB (2014) Mycobacterium tuberculosis strains of the modern sublineage of the Beijing family are more likely to display increased virulence than strains of the ancient sublineage. J Clin Microbiol 52:2615–2624. https://doi.org/10.1128/JCM.00498-14

    Article  PubMed  PubMed Central  Google Scholar 

  60. Almeida FM, Ventura TLB, Amaral EP et al (2017) Hypervirulent Mycobacterium tuberculosis strain triggers necrotic lung pathology associated with enhanced recruitment of neutrophils in resistant C57BL/6 mice. PLoS One 12:1–19. https://doi.org/10.1371/journal.pone.0173715

    Article  CAS  Google Scholar 

  61. Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557. https://doi.org/10.1038/nbt1267

    Article  CAS  PubMed  Google Scholar 

  62. Maher S, McClean S (2006) Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem Pharmacol 71:1289–1298. https://doi.org/10.1016/j.bcp.2006.01.012

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (CAPES) -Finance Code 001. We acknowledge the financial support of the Brazilian agencies CNPq, FAPERJ (E-26/203090/2016, E-26/202.132/2015, E-26/202.735/2016), and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdirene Moreira Gomes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 9.45 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Gebara, R., Taveira, G.B., de Azevedo dos Santos, L. et al. Identification and Characterization of Two Defensins from Capsicum annuum Fruits that Exhibit Antimicrobial Activity. Probiotics & Antimicro. Prot. 12, 1253–1265 (2020). https://doi.org/10.1007/s12602-020-09647-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09647-6

Keywords

Navigation