Skip to main content
Log in

Characterization, the Antioxidant and Antimicrobial Activity of Exopolysaccharide Isolated from Poultry Origin Lactobacilli

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

A Correction to this article was published on 17 January 2019

This article has been updated

Abstract

The natural antioxidant agent is urgently needed to prevent the negative effects of newly generated free radicals and chronic disorders. Recently, the microbial exopolysaccharide (EPS) is currently used as a potential biopolymer due to its unique biological characteristics. In this study, the biological potential was carried out on the EPSs produced by Lactobacillus reuteri SHA101 (EPS-lr) and Lactobacillus vaginalis SHA110 (EPS-lvg) isolated from gut cecum samples of healthy poultry birds (hen). As results, the EPS-lr and EPS-lvg showed the emulsifying activity of 37.8 ± 1.6% and 27.8 ± 0.5% after the 360 h, respectively. The scanning electron microscopy analysis of EPS-lr and EPS-lvg demonstrated a smooth surface with a compact structure. The both EPSs exhibited strong antibacterial activity against E. coli and Salmonella typhimurium in vitro. In additions, at 4 mg/mL concentration, the EPS-lr and EPS-lvg samples showed potent antioxidant activity regarding hydroxyl radical DPPH (2,2-diphenyl-1-picrylhydrazyl) radical, superoxide anion radical and reducing power at OD700 nm. Furthermore, the EPS-lr and EPS-lvg (600 μg/mL) possessed antitumor activity against colon cancer (Caco-2) cell after 72 h. The results suggested that these EPSs would have great potential in the application of antitumor and antioxidant foods, biomedicine, and pharmaceutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Change history

  • 17 January 2019

    The original version of this article unfortunately contained mistakes. Replacements are needed on the following figures and captions:

References

  1. Kanmani P, Satish kR, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2011) Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresour Technol 102(7):4827–4833. https://doi.org/10.1016/j.biortech.2010.12.118

    Article  CAS  PubMed  Google Scholar 

  2. Liu C, Lu J, Lu L, Liu Y, Wang F, Xiao M (2010) Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresour Technol 101(14):5528–5533. https://doi.org/10.1016/j.biortech.2010.01.151

    Article  CAS  PubMed  Google Scholar 

  3. Kavita K, Singh VK, Mishra A, Jha B (2014) Characterisation and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis. Carbohydr Polym 101(1):29–35. https://doi.org/10.1016/j.carbpol.2013.08.099

    Article  CAS  PubMed  Google Scholar 

  4. Ismail B, Nampoothiri KM (2010) Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol 192(12):1049–1057. https://doi.org/10.1007/s00203-010-0636-y

    Article  CAS  PubMed  Google Scholar 

  5. Li S, Huang R, Shah NP, Tao X, Xiong Y, Wei H (2014) Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. J Dairy Sci 97(12):7334–7343. https://doi.org/10.3168/jds.2014-7912

    Article  CAS  PubMed  Google Scholar 

  6. Kanmani P, Suganya K, Kumar RS, Yuvaraj N, Pattukumar V, Paari KA, Arul V (2013) Synthesis and functional characterization of antibiofilm exopolysaccharide produced by Enterococcus faecium MC13 isolated from the gut of fish. Appl Biochem Biotechnol 169(3):1001–1015. https://doi.org/10.1007/s12010-012-0074-1

    Article  CAS  PubMed  Google Scholar 

  7. Patten DA, Leivers S, Chadha MJ, Maqsood M, Humphreys PN, Laws AP, Collett A (2013) The structure and immunomodulatory activity on intestinal epithelial cells of the EPSs isolated from Lactobacillus helveticus sp. rosyjski and Lactobacillus acidophilus sp. 5e2. Carbohydr Res 384C(1):119–127. https://doi.org/10.1016/j.carres.2013.12.008.

    Article  Google Scholar 

  8. Landersjö C, Yang Z, Huttunen E, Widmalm G (2002) Structural studies of the exopolysaccharide produced by Lactobacillus rhamnosus strain GG (ATCC 53103). Biomacromolecules 3(4):880–884

    Article  PubMed  Google Scholar 

  9. Péant B, Lapointe G, Gilbert C, Atlan D, Ward P, Roy D (2005) Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology 151(6):1839–1851

    Article  PubMed  Google Scholar 

  10. Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. Apmis Suppl 136:1–51. https://doi.org/10.1111/apm.12099

    Article  CAS  Google Scholar 

  11. Zhang Z, Liu Z, Tao X, Wei H (2016) Characterization and sulfated modification of an exopolysaccharide from Lactobacillus plantarum ZDY2013 and its biological activities. Carbohydr Polym 153:25–33. https://doi.org/10.1016/j.carbpol.2016.07.084

    Article  CAS  PubMed  Google Scholar 

  12. Li W, Ji J, Chen X, Jiang M, Rui X, Dong M (2014) Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr Polym 102(1):351–359. https://doi.org/10.1016/j.carbpol.2013.11.053

    Article  CAS  PubMed  Google Scholar 

  13. Rajoka MSR, Hayat HF, Sarwar S, Mehwish HM, Ahmad F, Hussain N, Shah SZH, Khurshid M, Siddiqu M, Shi J (2018) Isolation and evaluation of probiotic potential of lactic acid bacteria isolated from poultry intestine. Microbiol 87(1):116–126. https://doi.org/10.1134/s0026261718010150

    Article  CAS  Google Scholar 

  14. Wang K, Li W, Rui X, Chen X, Jiang M, Dong M (2014) Structural characterization and bioactivity of released exopolysaccharides from Lactobacillus plantarum 70810. Int J Biol Macromol 67(6):71–78. https://doi.org/10.1016/j.ijbiomac.2014.02.056

    Article  CAS  PubMed  Google Scholar 

  15. Xu R, Shen Q, Ding X, Gao W, Li P (2011) Chemical characterization and antioxidant activity of an exopolysaccharide fraction isolated from Bifidobacterium animalis RH. Eur Food Res Technol 232(2):231–240. https://doi.org/10.1007/s00217-010-1382-8

    Article  CAS  Google Scholar 

  16. Chen R, Meng F, Liu Z, Chen R, Zhang M (2010) Antitumor activities of different fractions of polysaccharide purified from Ornithogalum caudatum ait. Carbohydr Polym 80(3):845–851. https://doi.org/10.1016/j.carbpol.2009.12.042

    Article  CAS  Google Scholar 

  17. Qin X, Zhang M, Wu L (2012) Purification and characterization of Cu,Zn superoxide dismutase from pumpkin (Cucurbita moschata) pulp. Eur Food Res Technol 235(6):1049–1054. https://doi.org/10.1007/s00217-012-1829-1

    Article  CAS  Google Scholar 

  18. Sasikumar K, Kozhummal Vaikkath D, Devendra L, Nampoothiri KM (2017) An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresour Technol 241:1152–1156. https://doi.org/10.1016/j.biortech.2017.05.075

    Article  CAS  PubMed  Google Scholar 

  19. Anjum, Nomana, Ahmed, Zaheer, Ahmad, Asif, Khan, Tariq S (2013) Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir - part II. Food Hydrocoll 30 (1):343–350. https://doi.org/10.1016/j.foodhyd.2012.06.009

  20. Qiao D, Ke C, Hu B, Luo J, Ye H, Sun Y, Yan X, Zeng X (2009) Antioxidant activities of polysaccharides from Hyriopsis cumingii. Carbohydr Polym 78(2):199–204. https://doi.org/10.1016/j.carbpol.2009.03.018

    Article  CAS  Google Scholar 

  21. Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X (2009) Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr Polym 78(2):275–281. https://doi.org/10.1016/j.carbpol.2009.03.046

    Article  CAS  Google Scholar 

  22. Fontana C, Cocconcelli PS, Vignolo G, Saavedra L (2015) Occurrence of antilisterial structural bacteriocins genes in meat borne lactic acid bacteria. Food Control 47:53–59. https://doi.org/10.1016/j.foodcont.2014.06.021

    Article  CAS  Google Scholar 

  23. Aaltonen J, Ojala T, Laitinen K, Poussa T, Ozanne S, Isolauri E (2011) Impact of maternal diet during pregnancy and breastfeeding on infant metabolic programming: a prospective randomized controlled study. Eur J Clin Nutr 65(1):10–19

    Article  CAS  PubMed  Google Scholar 

  24. Tsai Y-T, Cheng P-C, Pan T-M (2012) The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl Microbiol Biotechnol 96(4):853–862. https://doi.org/10.1007/s00253-012-4407-3

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X (2010) Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr Polym 82(3):895–903. https://doi.org/10.1016/j.carbpol.2010.06.013

    Article  CAS  Google Scholar 

  26. Yang ZN, Li SY, Zhang X, Zeng XP, Li D, Zhao YJ, Zhang J (2010) Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: potential application in fermented milk products. J Biosci Bioeng 110(1):53–57. https://doi.org/10.1016/j.jbiosc.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  27. Costa NE, Wang L, Auty ME, Hannon JA, McSweeney PLH, Beresford TP (2012) Rheological, microscopic and primary chemical characterisation of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris DPC6532. Dairy Sci Technol 92(3):219–235. https://doi.org/10.1007/s13594-012-0059-4

    Article  CAS  Google Scholar 

  28. Juditha P, Marianol DLC, Analíag A (2008) Gelling properties of kefiran, a food-grade polysaccharide obtained from kefir grain. Food Hydrocoll 22(8):1520–1527. https://doi.org/10.1016/j.foodhyd.2007.10.005

    Article  CAS  Google Scholar 

  29. Ale EC, Perezlindo MJ, Burns P, Tabacman E, Reinheimer JA, Binetti AG (2016) Exopolysaccharide from Lactobacillus fermentum Lf2 and its functional characterization as a yogurt additive. J dairy Res 83(4):487–492. https://doi.org/10.1017/s0022029916000571

    Article  CAS  PubMed  Google Scholar 

  30. Willumsen PA, Karlson U (1996) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7(5):415–423

    Article  CAS  Google Scholar 

  31. Devi PB, Kavitake D, Shetty PH (2016) Physico-chemical characterization of galactan exopolysaccharide produced by Weissella confusa KR780676. Int J Biol Macromol 93 (Pt A) 93:822–828. https://doi.org/10.1016/j.ijbiomac.2016.09.054

    Article  CAS  Google Scholar 

  32. Riaz Rajoka MS, Jin M, Haobin Z, Li Q, Shao D, Jiang C, Huang Q, Yang H, Shi J, Hussain N (2018) Functional characterization and biotechnological potential of exopolysaccharide produced by Lactobacillus rhamnosus strains isolated from human breast milk. LWT-Food sci Technol 89:638–647. https://doi.org/10.1016/j.lwt.2017.11.034

    Article  CAS  Google Scholar 

  33. Zhu KX, Sheng H, Wei P, Qian HF, Zhou HM (2010) Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Res Int 43(4):943–948. https://doi.org/10.1016/j.foodres.2010.01.005

    Article  CAS  Google Scholar 

  34. Wang K, Li W, Rui X, Li T, Chen X, Jiang M, Dong M (2015) Chemical modification, characterization and bioactivity of a released exopolysaccharide (r-EPS1) from Lactobacillus plantarum 70810. Glycoconj J 32(1):1–11. https://doi.org/10.1007/s10719-014-9567-1.

    Article  Google Scholar 

  35. Huang SQ, Ding S, Fan L (2012) Antioxidant activities of five polysaccharides from Inonotus obliquus. Int J Biol Macromol 50(5):1183–1187. https://doi.org/10.1016/j.ijbiomac.2012.03.019

    Article  CAS  PubMed  Google Scholar 

  36. Tokura S, Ueno K, Miyazaki S, Nishi N (1996) Molecular weight dependent antimicrobial activity by chitosan. Macromol Symp 120(1):1–9

    Article  Google Scholar 

  37. Li J, Wu Y, Zhao L (2016) Antibacterial activity and mechanism of chitosan with ultra high molecular weight. Carbohydr Polym 148:200–205. https://doi.org/10.1016/j.carbpol.2016.04.025

    Article  CAS  PubMed  Google Scholar 

  38. Maalej H, Boisset C, Hmidet N, Colinmorel P, Buon L, Nasri M (2017) Depolymerization of Pseudomonas stutzeri exopolysaccharide upon fermentation as a promising production process of antibacterial compounds. Food Chem 227:22–32. https://doi.org/10.1016/j.foodchem.2017.01.079.

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Zhao X, Yang Y, Zhao A, Yang Z (2015) Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int J Biol Macromol 74:119–126. https://doi.org/10.1016/j.ijbiomac.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  40. Kim Y, Oh S, Yun HS, Oh S, Kim SH (2010) Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett Appl Microbiol 51(2):123–130. https://doi.org/10.1111/j.1472-765X.2010.02859.x.

    Article  CAS  PubMed  Google Scholar 

  41. Li W, Tang W, Ji J, Xia X, Rui X, Chen X, Jiang M, Zhou J, Dong M (2015) Characterization of a novel polysaccharide with anti-colon cancer activity from Lactobacillus helveticus MB2-1. Carbohydr Res 411:6–14. https://doi.org/10.1016/j.carres.2014.12.014

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Key Technology R&D Program (grant number 2015BAD16B02) and the National Natural Science Foundation of China (NSFC) (grant numbers 31201408 and 31471718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahid Riaz Rajoka.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajoka, M.S.R., Mehwish, H.M., Hayat, H.F. et al. Characterization, the Antioxidant and Antimicrobial Activity of Exopolysaccharide Isolated from Poultry Origin Lactobacilli. Probiotics & Antimicro. Prot. 11, 1132–1142 (2019). https://doi.org/10.1007/s12602-018-9494-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9494-8

Keywords

Navigation