Skip to main content

Advertisement

Log in

Bacteriocin-Producing Lactic Acid Bacteria Isolated from Mangrove Forests in Southern Thailand as Potential Bio-Control Agents: Purification and Characterization of Bacteriocin Produced by Lactococcus lactis subsp. lactis KT2W2L

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The aim of this work was to purify and characterize the bacteriocin produced by Lactococcus lactis subsp. lactis KT2W2L previously isolated from mangrove forests in southern Thailand, in order to evaluate its potential as new food protective agent. The active peptide from the cell-free supernatant of this strain was purified in 4 steps: (1) precipitation with 70 % saturated ammonium sulfate, (2) elution on a reversed-phase cartridge using different concentrations of acetonitrile, (3) cation-exchange chromatography and (4) final purification by reversed-phase HPLC on a C8 column. The molecular mass of 3,329.5254 Da of the purified bacteriocin, determined by mass spectrometry, is nearly identical to that of peptide nisin Z. The activity of the purified bacteriocin was unaffected by pH (2.0–10.0), thermostable but was sensitive to proteolytic enzymes. The bacteriocin activity was stable after 8 weeks of storage at −20 °C and 7 weeks of storage at 4 °C, but decreased after 3 weeks of storage at 37 °C. It was stable when incubated for 1 month at 4 °C in 0–30 % NaCl. Inhibitory spectrum of this bacteriocin showed a wide range of activity against similar bacterial strains, food-spoilage and food-borne pathogens. L. lactis subsp. lactis KT2W2L was sensitive to kanamycin, penicillin and tetracycline but resistant to ampicillin, gentamicin and vancomycin. The fragment obtained after amplification of genomic DNA from L. lactis subsp. lactis KT2W2L, with specific primers for bacteriocin genes, presented 99 % homology to the nisin Z gene. PCR amplification demonstrated that L. lactis subsp. lactis KT2W2L does not harbor virulence genes cylA, cylB, efaAfs and esp. The bacteriocin and its producing strain may find application as bio-preservatives for reduction in food-spoilage and food-borne pathogens in food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmadova A, Dimov S, Ivanova I, Choiset Y, Chobert J-M, Kuliev A, Haertlé T (2011) Proteolytic activities and safety of use of Enterococci strains isolated from traditional Azerbaijani dairy products. Eur Food Res Technol 233:131–140

    Article  CAS  Google Scholar 

  2. Ahmadova A, Todorov SD, Choiset Y, Rabesona H, Mirhadi Zadi T, Kuliyev A, Franco BDGM, Chobert J-M, Haertlé T (2013) Evaluation of antimicrobial activity, probiotic properties and safety of wild strain Enterococcus faecium AQ71 isolated from Azerbaijani Motal cheese. Food Control 30:631–641

    Article  CAS  Google Scholar 

  3. Akçelik O, Tükel C, Ozcengiz G, Akçelik M (2006) Characterization of bacteriocins from two Lactococcus lactis subsp. lactis isolates. Mol Nutr Food Res 50:306–313

    Article  Google Scholar 

  4. Alegría A, Delgado S, Roces C, López B, Mayo B (2010) Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk. Int J Food Microbiol 143:61–66

    Article  Google Scholar 

  5. Andrews JM (2001) Determination of minimum inhibitory concentrations. Ann Food Sci Technol 13:82–87

    Google Scholar 

  6. Balciunas EM, Castillo Martinez FA, Todorov SD, de BDG Franco M, Converti A, Oliveira RP de S (2013) Novel biotechnological applications of bacteriocins: a review. Food Control 32:134–142

    Article  CAS  Google Scholar 

  7. Barbosa J, Gibbs PA, Teixeira P (2010) Virulence factors among enterococci isolated from traditional fermented meat products produced in the North of Portugal. Food Control 21:651–656

    Article  Google Scholar 

  8. Belgacem ZB, Abriouel H, Ben Omar N, Lucas R, Martínez-Canamero M, Gálvez A, Manai M (2010) Antimicrobial activity, safety aspects, and some technological properties of bacteriocinogenic Enterococcus faecium from artisanal Tunisian fermented meat. Food Control 21:462–470

    Article  Google Scholar 

  9. Ben Omar N, Castro A, Lucas R, Abriouel H, Yousif NMK, Franz CMAP, Holzapfel WH, Rubén P-P, Martínez-Canãmero M, Gálvez A (2004) Functional and safety aspects of enterococci isolated from different Spanish foods. Syst Appl Microbiol 27:118–130

    Article  CAS  Google Scholar 

  10. Biscola V, Todorov SD, Capuano VSC, Abriouel H, Gálvez A, Franco BDGM (2013) Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product. Meat Sci 93:607–613

    Article  CAS  Google Scholar 

  11. Bower CK, McGuire J, Daeschel MA (1995) Suppression of Listeria monocytogenes colonization following adsorption of nisin onto silica surfaces. Appl Environ Microbiol 61:992–997

    CAS  Google Scholar 

  12. Bower CK, McGuire J, Daeschel MA (1995) Influences on the antimicrobial activity of surface-adsorbed nisin. J Ind Microbiol 15:227–233

    Article  CAS  Google Scholar 

  13. Bromberg R, Moreno I, Delboni RR, Cintra HC, Oliveira PTV (2005) Characteristics of the bacteriocin produced by Lactococcus lactis subsp. cremoris CTC 204 and the effect of this compound on the mesophilic bacteria associated with raw beef. World J Microbiol Biotechnol 21:351–358

    Article  CAS  Google Scholar 

  14. Campion A, Casey PG, Field D, Cotter PD, Hill C, Ross RP (2013) In vivo activity of nisin A and nisin V against Listeria monocytogenes in mice. BMC Microbiol 13:23

    Article  CAS  Google Scholar 

  15. Cariolato D, Andrighetto C, Lombardi A (2008) Occurrence of virulence factors and antibiotic resistances in Enterococcus faecalis and Enterococcus faecium collected from dairy and human samples in North Italy. Food Control 19:886–892

    Article  CAS  Google Scholar 

  16. Choi HJ, Cheigh CI, Kim SB, Pyun YR (2000) Production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from Kimchi. Appl Microbiol 88:563–571

    Article  CAS  Google Scholar 

  17. Cintas LM, Casaus MP, Herranz C, Nes IF, Hernández PE (2001) Review: bacteriocins of lactic acid bacteria. Food Sci Technol Int 7:281–305

    CAS  Google Scholar 

  18. Cosentino S, Fadda ME, Deplano M, Melis R, Pomata R, Pisano MB (2012) Antilisterial activity of nisin-like bacteriocin-producing Lactococcus lactis subsp. lactis isolated from traditional Sardinian dairy products. J Biomed Biotechnol. doi:10.1155/2012/376428

    Google Scholar 

  19. de Kwaadsteniet M, ten Doeschate K, Dicks LMT (2008) Characterization of the structural gene encoding nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Clarias gariepinus). Appl Environ Microbiol 74:547–549

    Article  Google Scholar 

  20. de Vos WM, Mulders JW, Siezen RJ, Hugenholtz J, Kuipers OP (1993) Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl Environ Microbiol 59:213–218

    Google Scholar 

  21. Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058–1071

    Article  CAS  Google Scholar 

  22. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635

    Article  CAS  Google Scholar 

  23. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2011) Scientific opinion on the safety and efficacy of Lactococcus lactis (NCIMB 30160) as a silage additive for all species. EFSA J 9(9):2366. [11 pp] doi:10.2903/j.efsa.2011.2366. Available online: www.efsa.europa.eu/efsajournal

  24. EFSA, European Food Safety Authority (2008) Update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. EFSA J 732:1–15

    Google Scholar 

  25. El-Ghaish S, Hadji-Sfaxi I, Ahmadova A, Choiset Y, Rabesona H, Sitohy M, Haertlé T, Chobert J-M (2011) Characterization of two safe Enterococcus strains producing enterocins isolated from Egyptian dairy products. Benef Microbes 2:15–27

    Article  CAS  Google Scholar 

  26. Elliott JA, Facklam RR (1996) Antimicrobial susceptibilities of Lactococcus lactis and Lactococcus garvieae and a proposed method to discriminate between them. J Clin Microbiol 34:1296–1298

    CAS  Google Scholar 

  27. Engelke G, Gutowski-Eckel Z, Hammelmann M, Entian KD (1992) Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl Environ Microbiol 58:3730–3743

    CAS  Google Scholar 

  28. Field D, Begley M, O’Connor PM, Daly KM, Hugenholtz F, Cotter PD, Hill C, Ross RP (2012) Bioengineered nisin A derivatives with enhanced activity against both gram positive and gram negative pathogens. PLoS ONE. doi:10.1371/journal.pone.0046884

    Google Scholar 

  29. Flórez AB, Danielsen M, Korhonen J, Zycka J, von Wright A, Bardowski J, Mayo B (2007) Antibiotic survey of Lactococcus lactis strains to six antibiotics by Etest, and establishment of new susceptibility-resistance cut-off values. J Dairy Res 74:262–268

    Article  Google Scholar 

  30. Flórez AB, Delgado S, Mayo B (2005) Antimicrobial susceptibility of lactic acid bacteria isolated from a cheese environment. Can J Microbiol 51:51–58

    Article  Google Scholar 

  31. Franz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151:125–140

    Article  CAS  Google Scholar 

  32. Ghrairi T, Manai M, Berjeaud JM, Frère J (2004) Antilisterial activity of lactic acid bacteria isolated from rigouta, a traditional Tunisian cheese. J Appl Microbiol 97:621–628

    Article  CAS  Google Scholar 

  33. Hadji-Sfaxi I, El-Ghaish S, Ahmadova A, Batdorj B, Le Blay-Laliberté G, Barbier G, Haertlé T, Chobert J-M (2011) Antimicrobial activity and safety of use of Enterococcus faecium PC4.1 isolated from Mongol yogurt. Food Control 22:2020–2027

    Article  Google Scholar 

  34. Hall LM, Duke B, Urwin G, Guiney M (1992) Epidemiology of Enterococcus faecalis urinary tract infection in a teaching hospital in London, United Kingdom. J Clin Microbiol 30:1953–1957

    CAS  Google Scholar 

  35. Heikens E, Leendertse M, Wijnands LM, van Luit-Asbroek M, Bonten MJ, van der Poll T, Willems RJ (2009) Enterococcal surface protein Esp is not essential for cell adhesion and intestinal colonization of Enterococcus faecium in mice. BMC Microbiol 9:19

    Article  Google Scholar 

  36. Heo WS, Kim EY, Kim YR, Hossain MT, Kong IS (2012) Salt effect of nisin Z isolated from a marine fish on the growth inhibition of Streptococcus iniae, a pathogen of streptococcosis. Biotechnol Lett 34:315–320

    Article  CAS  Google Scholar 

  37. Himelbloom B, Nilsson L, Gram L (2001) Factors affecting production of an antilisterial bacteriocin by Carnobacterium piscicola strain A9b in laboratory media and model fish systems. J Appl Microbiol 91:506–513

    Article  CAS  Google Scholar 

  38. Jett BD, Huycke MM, Gilmore MS (1994) Virulence of enterococci. Clin Microbiol Rev 7:462–478

    CAS  Google Scholar 

  39. Kaletta C, Entian KD (1989) Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J Bacteriol 171:1597–1601

    CAS  Google Scholar 

  40. Kaur B, Balgir P, Mittu B, Chauhan A, Kumar B (2013) Purification and physicochemical characterization of anti-Gardnerella vaginalis bacteriocin HV6b produced by Lactobacillus fermentum isolate from human vaginal ecosystem. Am J Biochem Mol Biol 3:91–100

    Article  CAS  Google Scholar 

  41. Koral G, Tuncer Y (2013) Nisin Z-producing Lactococcus lactis subsp. lactis GYl32 isolated from boza. J Food Process Preserv. doi:10.1111/jfpp.12061

    Google Scholar 

  42. Kumari A, Akkoç N, Akçelik M (2012) Purification and partial characterization of bacteriocin produced by Lactococcus lactis ssp. lactis LL171. World J Microbiol Biotechnol 28:1647–1655

    Article  CAS  Google Scholar 

  43. Lee HJ, Joo YJ, Park CS, Kim SH, Hwang IK, Ahn JS, Mheen TI (1999) Purification and characterization of a bacteriocin produced by Lactococcus lactis subsp. lactis H-559 isolated from kimchi. J Biosci Bioeng 88:153–159

    Article  CAS  Google Scholar 

  44. Lee YA (2002) Purification and characterisation of bacteriocin produced by Lactococcus lactis subsp. lactis RW18 isolated from steamed fish (Rastrelliger Sp.) (masters). Universiti Putra Malaysia

  45. Maki DG, Agger WA (1988) Enterococcal bacteremia: clinical features, the risk of endocarditis, and management. Medicine 67:248–269

    Article  CAS  Google Scholar 

  46. Malini M, Janakiraman S (2012) Detection of heat stable bacteriocin from Lactobacillus acidophilus NCIM5426 by liquid chromatography/mass spectrometry. Indian J Sci Technol 5:2325–2332

    Google Scholar 

  47. Meghrous J, Lacroix C, Bouksaïm M, LaPointe G, Simard RE (1997) Note: genetic and biochemical characterization on nisin Z produced by Lactococcus lactis ssp. lactis biovar. diacetylactis UL 719. J Appl Microbiol 83:133–138

    Article  CAS  Google Scholar 

  48. Megran DW (1993) Diagnosis and treatment of enterococcal endocarditis. Hosp Pract (Office Ed) 28(41–44):47–50

    Google Scholar 

  49. Mojgani N, Sabiri G, Ashtiani MP, Torshizi MAK (2009) Characterization of bacteriocins produced by Lactobacillus brevis NM 24 and L. fermentum NM 332 isolated from green olives in Iran. Internet J Microbiol 6(2). doi:10.5580/1596

  50. Moreno I, Lerayer ALS, Baldini VLS, de Leitão MF F (2000) Characterization of bacteriocins produced by Lactococcus lactis strains. Braz J Microbiol 31:183–191

    Article  Google Scholar 

  51. Mustapha A, Ariyapitipun T, Clarke AD (2002) Survival of Escherichia coli 0157:H7 on vacuum-packaged raw beef treated with polylactic acid, lactic acid, and nisin. J Food Sci 67:262–267

    Article  CAS  Google Scholar 

  52. Nallapareddy SR, Qin X, Weinstock GM, Höök M, Murray BE (2000) Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 68:5218–5224

    Article  CAS  Google Scholar 

  53. Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128

    Article  CAS  Google Scholar 

  54. Noonpakdee W, Santivarangkna C, Jumriangrit P, Sonomoto K, Panyim S (2003) Isolation of nisin-producing Lactococcus lactis WNC 20 strain from nham, a traditional Thai fermented sausage. Int J Food Microbiol 81:137–145

    Article  CAS  Google Scholar 

  55. Noreen N, Hooi WY, Baradaran A, Rosfarizan M, Sieo CC, Rosli MI, Yusoff K, Raha AR (2011) Lactococcus lactis M4, a potential host for the expression of heterologous proteins. Microb Cell Fact 10:28

    Article  CAS  Google Scholar 

  56. Ogunbanwo ST, Sanni AI, Onilude AA (2003) Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. Afr J Biotechnol 2:219–227

    CAS  Google Scholar 

  57. Olasupo N, Schillinger U, Narbad A, Dodd H, Holzapfel W (1999) Occurrence of nisin Z production in Lactococcus lactis BFE 1500 isolated from wara, a traditional Nigerian cheese product. Int J Food Microbiol 53:141–152

    Article  CAS  Google Scholar 

  58. Paoletti C, Foglia G, Princivalli MS, Magi G, Guaglianone E, Donelli G, Pruzzo C, Biavasco F, Facinelli B (2007) Co-transfer of vanA and aggregation substance genes from Enterococcus faecalis isolates in intra- and interspecies matings. J Antimicrob Chemother 59:1005–1009

    Article  CAS  Google Scholar 

  59. Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol 50:512–542

    Article  Google Scholar 

  60. Park SH, Itoh K, Kikuchi E, Niwa H, Fujisawa T (2003) Identification and characteristics of nisin Z-producing Lactococcus lactis subsp. lactis isolated from Kimchi. Curr Microbiol 46:385–388

    Article  CAS  Google Scholar 

  61. Pinto AL, Fernandes M, Pinto C, Albano H, Castilho F, Teixeira P, Gibbs PA (2009) Characterization of anti-Listeria bacteriocins isolated from shellfish: potential antimicrobials to control non-fermented seafood. Int J Food Microbiol 129:50–58

    Article  CAS  Google Scholar 

  62. Piper C, Hill C, Cotter PD, Ross RP (2011) Bioengineering of a nisin a-producing Lactococcus lactis to create isogenic strains producing the natural variants nisin F, Q and Z. Microb Biotechnol 4:375–382

    Article  CAS  Google Scholar 

  63. Pratush A, Gupta A, Kumar A, Vyas G (2012) Application of purified bacteriocin produced by Lactococcus lactis AP2 as food biopreservative in acidic foods. Ann Food Sci Technol 13:82–87

    CAS  Google Scholar 

  64. Randazzo CL, Pitino I, Scifò GO, Caggia C (2009) Biopreservation of minimally processed iceberg lettuces using a bacteriocin produced by Lactococcus lactis wild strain. Food Control 20:756–763

    Article  CAS  Google Scholar 

  65. Rattanachaikunsopon P, Phumkhachorn P (2008) Incidence of nisin Z production in Lactococcus lactis subsp. lactis TFF 221 isolated from Thai fermented foods. J Food Prot 71:2024–2029

    CAS  Google Scholar 

  66. Reunanen J (2007) Lantibiotic Nisin and Its Detection Methods. University of Helsinki

  67. Rouse S, Field D, Daly KM, O’Connor PM, Cotter PD, Hill C, Ross RP (2012) Bioengineered nisin derivatives with enhanced activity in complex matrices. Microb Biotechnol 5:501–508

    Article  Google Scholar 

  68. Saeed S, Ahmad S, Rasool SA (2004) Antimicrobial spectrum, production and mode of action of staphylococcin 188 produced by Staphylococcus aureus 188. Pak J Pharm Sci 17:1–8

    CAS  Google Scholar 

  69. Sahingil D, Isleroglu H, Yildirim Z, Akcelik M, Yildirim M (2011) Characterization of lactococcin BZ produced by Lactococcus lactis subsp lactis BZ isolated from boza. Turk J Biol 35:21–33

    CAS  Google Scholar 

  70. Sartingen S, Rozdzinski E, Muscholl-Silberhorn A, Marre R (2000) Aggregation substance increases adherence and internalization, but not translocation, of Enterococcus faecalis through different intestinal epithelial cells in vitro. Infect Immun 68:6044–6047

    Article  CAS  Google Scholar 

  71. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  Google Scholar 

  72. Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  Google Scholar 

  73. Schillinger U, Lucke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906

    CAS  Google Scholar 

  74. Schneider N, Werkmeister K, Pischetsrieder M (2011) Analysis of nisin A, nisin Z and their degradation products by LCMS/MS. Food Chem 127:847–854

    Article  CAS  Google Scholar 

  75. Semedo T, Almeida Santos M, Martins P, Silva Lopes MF, Figueiredo Marques JJ, Tenreiro R, Barreto Crespo MT (2003) Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J Clin Microbiol 41:2569–2576

    Article  CAS  Google Scholar 

  76. Sezer C, Güven A, Bilge Oral N, Vatansever L (2013) Detoxification of aflatoxin B1 by bacteriocins and bacteriocinogenic lactic acid bacteria. Turk J Vet Anim Sci 37:594–601

    Article  Google Scholar 

  77. Singh KV, Nallapareddy SR, Sillanpää J, Murray BE (2010) Importance of the collagen adhesin ace in pathogenesis and protection against Enterococcus faecalis experimental endocarditis. PLoS Pathog. doi:10.1371/journal.ppat.1000716

    Google Scholar 

  78. Sivakumar N, Rajamani Saif A-B (2010) Partial characterization of bacteriocins produced by Lactobacillus acidophilus and Pediococcus acidilactici. Braz Arch Biol Technol 53:1177–1184

    Article  Google Scholar 

  79. Süßmuth SD, Muscholl-Silberhorn A, Wirth R, Susa M, Marre R, Rozdzinski E (2000) Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infect Immun 68:4900–4906

    Article  Google Scholar 

  80. Tuncer Y, Ozden B (2010) Partial biochemical characterization of nisin-like bacteriocin produced by Lactococcus lactis subsp. lactis YBD11 isolated from Boza, a traditional fermented Turkish beverage. Rom Biotechnol Lett 15:4940–4948

    CAS  Google Scholar 

  81. Valenzuela AS, Ben Omar N, Abriouel H, Lópeza RL, Veljovic K, Cañamero MM, Topisirovic MKL, Antonio G (2009) Virulence factors, antibiotic resistance, and bacteriocins in enterococci from artisan foods of animal origin. Food Control 20:381–385

    Article  CAS  Google Scholar 

  82. Vankerckhoven V, van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42:4473–4479

    Article  CAS  Google Scholar 

  83. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

  84. Zacharof MP, Lovitt RW (2012) Bacteriocins produced by lactic acid bacteria a Review Article. APCBEE Procedia 2:50–56

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a scholarship from the Office of the Higher Education Commission (OHEC) to Noraphat Hwanhlem under the CHE-PhD Scholarship Program. It was also supported from the Graduate School, Prince of Songkla University, the National Research University Project of the OHEC and by the French Bio-Asie project “LAB—Utilization of lactic acid bacteria in foods and health” from Foreign Affair Ministry. Authors thank Yvan Choiset (UR 1268 Biopolymères Interactions Assemblages, Équipe Fonctions et Interactions des Protéines, INRA, 44316 Nantes Cedex 03, France) for his technical assistance.

Conflict of interest

Noraphat Hwanhlem declares that he has no conflict of interest. Vanessa Biscola declares that she has no conflict of interest. Shady El-Ghaish declares that he has no conflict of interest. Emmanuel Jaffrès declares that he has no conflict of interest. Xavier Dousset declares that he has no conflict of interest. Thomas Haertlé declares that he has no conflict of interest. Aran H-Kittikun declares that he has no conflict of interest. Jean-Marc Chobert declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Chobert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwanhlem, N., Biscola, V., El-Ghaish, S. et al. Bacteriocin-Producing Lactic Acid Bacteria Isolated from Mangrove Forests in Southern Thailand as Potential Bio-Control Agents: Purification and Characterization of Bacteriocin Produced by Lactococcus lactis subsp. lactis KT2W2L. Probiotics & Antimicro. Prot. 5, 264–278 (2013). https://doi.org/10.1007/s12602-013-9150-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-013-9150-2

Keywords

Navigation