Skip to main content
Log in

Effects of reduced vertical mixing under sea ice on Atlantic meridional overturning circulation (AMOC) in a global ice-ocean model

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Most open ocean and climate models assume a constant background mixing; however, vertical mixing should be reduced under the sea ice in polar region because the sea-ice cover acts as an insulator against the momentum transfer between the atmosphere and ocean. Using a global Ocean General Circulation Model (OGCM), we show that the Atlantic meridional overturning circulation (AMOC) can be substantially affected by reduced vertical mixing under the sea ice. When the background diffusivity under the sea ice is reduced by 1 order less than that in ice-free regions, the volume transport of the AMOC in the upper 3000 m is increased by up to 14% accordingly. The numerical experiment suggests that the reduced background diffusivity makes waters denser in the Arctic Ocean and the denser water is transported into the Nordic Seas to push up the isopycnal surfaces over the Greenland- Iceland-Scotland Ridge. Consequently, the AMOC is enhanced by overflows of the denser water crossing the Denmark Strait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, Volume 2: Salinity. U.S. Government Printing Office, Washington, DC, NOAA Atlas NESDIS 69, 184 p

    Google Scholar 

  • Conkright ME, Locarnini RA, Garcia HE, O’ Brien TD, Boyer TP, Stephens C, Antonov JI (2002) World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, CD-ROM Documentation. Ocean Climate Laboratory, National Oceanographic Data Center Internal Report 17, 21 p

    Google Scholar 

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938. doi:10.1126/science.1141304

    Article  Google Scholar 

  • Döscher R, Beckmann A (2000) Effects of a bottom boundary layer parameterization in a coarse-resolution model of the North Atlantic Ocean. J Atmos Ocean Tech 17:698–707

    Article  Google Scholar 

  • Döscher R, Redler R (1997) The relative importance of northern overflow and subpolar deep convection for the North Atlantic thermohalince circulation. J Phys Oceanogr 27:1894–1902

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Griffies SM, Gnanadesikan A, Dixon KW, Dunne JP, Gerdes R, Harrison MJ, Rosati A, Russell JL, Samuels BL, Spelman MJ, Winton M, Zhang R (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 1:45–79

    Article  Google Scholar 

  • Guthrie JD, Morison JH, Fer I (2013) Revisiting internal waves and mixing in the Arcic Ocean. J Geophys Res-Oceans 118:3966–3977. doi:10.1002/jgrc.20294

    Article  Google Scholar 

  • Karcher M, Beszczynska ? Möller A, Kauker F, Gerdes R, Heyen S, Rudels B, Schauer U (2011) Arctic Ocean warming and its consequences for the Denmark Strait overflow. J Geophys Res 116:C02037. doi:10.1029/2010JC006265

    Article  Google Scholar 

  • Kösters F, Käse RH, Schmittner A, Hermann P (2005) The effect of Denmark Strait overflow on the Atlantic Meridional Overturning Circulation. Geophys Res Lett 32:L04602. doi:10.1029/2004GL022112

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. National Center for Atmospheric Research, Technical Report TN-460+STR, 105 p http://opensky.library.ucar.edu/collections/TECH-NOTE-000-000-000-601

    Google Scholar 

  • Levine MD, Paulson CA, Morison JH (1985) Internal waves in the Arctic Ocean: comparison with low-latitude observations. J Phys Oceanogr 15:805–809

    Article  Google Scholar 

  • Levine MD, Paulson CA, Morison JH (1987) Observations of internal gravity waves under the Arctic pack ice. J Geophys Res 92(C1):779–782

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, Volume 1: Temperature. U.S. Government Printing Office, Washington, DC, NOAA Atlas NESDIS 68, 184 p

    Google Scholar 

  • Lozier MS, Roussenov V, Reed MSC, Williams RG (2010) Opposing decadal changes for the North Atlantic meridional overturning circulation. Nature Geosci 3:728–734. doi:10.1038/ngeo947

    Article  Google Scholar 

  • Morison JH, Long CE, Levine MD (1985) Internal wave dissipation under sea ice. J Geophys Res 90(11):959–966

    Google Scholar 

  • Nguyen AT, Menemenlis D, Kwok R (2011) Arctic ice-ocean simulation with optimized model parameters: approach and assessment. J Geophys Res 116:C04025. doi:10.1029/2010JC006573

    Article  Google Scholar 

  • Perovich DK, Richter-Menge JA (2009) Loss of sea ice in the Arctic. Annu Rev Mar Sci 1:417–441. doi:10.1146/annurev.marine.010908.163805

    Article  Google Scholar 

  • Roberts MJ, Wood RA (1997) Topographic sensitivity studies with a Bryan-Cox type Ocean model. J Phys Oceanogr 27:823–836

    Article  Google Scholar 

  • Simmons HL, Jayne SR, St.Laurent LC, Weaver AJ (2004) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model 6:245–263

    Article  Google Scholar 

  • Spall MA (2013) On the circulation of Atlantic Water in the Arctic Ocean. J Phys Oceanogr 43:2352–2371

    Article  Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Climate 19:1365–1387

    Article  Google Scholar 

  • Swingedouw D, Rodehacke CB, Behrens E, Menary M, Olsen SM, Gao Y, Mikolajewicz U, Mignot J, Biastoch A (2013) Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Clim Dynam 41:695–720. doi:10.1007/s00382-012-1479-9

    Article  Google Scholar 

  • Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Climate 14:2079–2087

    Article  Google Scholar 

  • Whitehead JA, Leetmaa A, Knox RA (1974) Rotating hydraulics of strait and sill flows. Gephys Fluid Dyn 6:101–125

    Article  Google Scholar 

  • Winton M (2000) A reformulated three-layer sea ice model. J Atmos Ocean Tech 17:525–531

    Article  Google Scholar 

  • Zhang J, Steele M (2007) Effect of vertical mixing on the Atlantic Water layer circulation in the Arctic Ocean. J Geophys Res 112:C04S04. doi:10.1029/2006JC003732

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Jin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Lee, H.J., Park, JH. et al. Effects of reduced vertical mixing under sea ice on Atlantic meridional overturning circulation (AMOC) in a global ice-ocean model. Ocean Sci. J. 50, 155–161 (2015). https://doi.org/10.1007/s12601-015-0012-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-015-0012-6

Key words

Navigation