Skip to main content

Advertisement

Log in

Under-ice measurements of suspended particulate matters using ADCP and LISST-Holo

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Using a mooring package comprising an acoustic Doppler current profiler (ADCP) and holographic imaging system, a 1-day ice camp study was performed under the Arctic sea ice in the northern Chukchi Plateau to estimate vertical and temporal variations in total suspended particulate matter (SPM). In early August, the SPM in the upper mixed layer (~15 m and above) under sea ice reached up to about 100 mg l-1 even under the offshore regime. Results of both holographic and microscopic analyses showed that dominant constituents of this increased SPM were biogenic rather than lithogenic materials. Due to the highest melt and break-up rates of sea ice during the summertime, the export of particulate materials and ice algal communities embedded in the sea ice might significantly contribute to the increase in SPM. This study suggests that the combined effects of the increase in ice algal production and the decrease in ice and snow cover and multi-year sea ice extent could create favorable conditions for enhancing the concentration and flux of SPM during the summertime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramova E, Tuschling K (2005) A 12-year study of the seasonal and interannual dynamics of mesozooplankton in the Laptev Sea: significance of salinity regime and life cycle patterns. Global Planet Change 48:141–164

    Article  Google Scholar 

  • Arrigo KR, Perovich DK, Pickart RS, Brown ZW, van Dijken GL, Lowry KE, Mills MM, Palmer MA, Balch WM, Bahr F, Bates NR, Benitez-Nelson C, Bowler B, Brownlee E, Ehn JK, Frey KE, Garley R, Laney SR, Lubelczyk L, Mathis J, Matsuoka A, Mitchell BG, More GWK, Ortega-Retuerta E, Pal S, Polashenski CM, Reynolds RA, Schieber B, Sosik HM, Stephens M, Swift JH (2012) Massive phytoplankton blooms under Arctic sea ice. Science 336:1408

    Article  Google Scholar 

  • Bluhm BA, Iken K, Hopcroft RR (2010) Observations and exploration of the Arctic’s Canada Basin and the Chukchi Sea: the hidden ocean and RUSALCA expeditions. Deep-Sea Res Pt II 57:1–4

    Article  Google Scholar 

  • Boetius A, Albrecht S. Bakker K, Bienhold C, Felden J, Fernandez-Mendez M, Hendricks S, Katlein C, Lalande C, Krumpen T, Nicolaus M, Peeken I, Rabe B, Rogacheva A, Rybakova E, Somavilla R, Wenzhofer F (2013) Export of algal biomass from the melting Arctic sea ice. Science 339:1430

    Article  Google Scholar 

  • Brown ZW, Arrigo KR (2013) Sea ice impacts on spring bloom dynamics and net primary production in the Eastern Bering Sea. J Geophys Res-Oceans 118:43–62. doi: 10.1029/2012JC008034

    Article  Google Scholar 

  • Carey AG (1987) Particle flux beneath fast ice in the shallow southwestern Beaufort Sea, Arctic Ocean. Mar Ecol-Prog Ser 40:247–257

    Article  Google Scholar 

  • Carmack E, Melling H (2011) Warmth from the deep. Nature Geosci 4:7–8

    Article  Google Scholar 

  • Cavalieri D, Markus T, Comiso J (2011) AMSR-E/Aqua Daily L3 12.5 km brightness temperature, sea ice concentration, and snow depth polar grids V002. National Snow and Ice Data Center, Boulder, Colorado, USA

    Google Scholar 

  • Darby DA (2003) Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns. J Geophys Res-Oceans 108(C8):3257. doi: 10.1029/2002JC001350

    Article  Google Scholar 

  • Deines KL (1999) Backscatter estimation using broadband acoustic Doppler current profilers. In: Proceedings of the 6th IEEE Working Conference on Current Measurement. San Diego, CA, pp 249–253

    Google Scholar 

  • Eicken H, Gradinger R, Gaylord A, Mahoney A, Rigor I, Melling H (2005) Sediment transport by sea ice in the Chukchi and Beaufort Seas: Increasing importance due to changing ice conditions? Deep-Sea Res Pt II 52:3281–3302

    Article  Google Scholar 

  • Forest A, Babin M, Stemmann L, Picheral M, Sampei M, Fortier L, Gratton Y, Belanger S, Devred E, Sahlin J, Doxaran D, Joux F, Ortega-Retuerta E, Martin J, Jeffrey WH, Gasser B, Miquel JC (2013) Ecosystem function and particle flux dynamics across the Mackenzie Shelf (Beaufort Sea, Arctic Ocean): an integrative analysis of spatial variability and biophysical forcings. Biogeosci 10:2833–2866

    Article  Google Scholar 

  • Graham GW, Davies EJ, Nimmo-Smith WAM, Bowers DG, Braithwaite KM (2012) Interpreting LISST-100X measurements of particles with complex shape using digital in-line holography. J Geophys Res-Oceans 117:C05034. doi: 10.1029/2011JC007613

  • Graham GW, Nimmo-Smith WAM (2010) The application of holography to the analysis of size and settling velocity of suspended cohesive sediments. Limnol Oceanogr-Meth 8:1–15

    Article  Google Scholar 

  • Grebmeier JM, Harvey HR (2005) The Western Arctic Shelf-Basin interactions (SBI) project: an overview. Deep-Sea Res Pt II 52:3109–3115

    Article  Google Scholar 

  • Ha HK, Maa JP-Y, Park K, Kim YH (2011) Estimation of highresolution sediment concentration profiles in bottom boundary layer using pulse-coherent acoustic Doppler current profilers. Mar Geol 279:199–209

    Article  Google Scholar 

  • Ha HK, Park K (2012) High-resolution comparison of sediment dynamics under different forcing conditions in the bottom boundary layer of a shallow, micro-tidal estuary. J Geophys Res 117:C06020. doi: 10.1029/2012JC007878

  • Holland MM, Bitz CM, Tremblay B (2006) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33:L23503

  • Horner RA (1985) Ecology of ice microalgae. In: Horner RA (ed) Sea Ice Biota. CRC Press, Boca Raton, FL, pp 147–157

    Google Scholar 

  • Kang D, Im J, Lee M-I, Quackenbush LJ (2014) The MODIS ice surface temperature product as an indicator of sea ice minimum over the Arctic Ocean. Remote Sens Environ 152:99–108

    Article  Google Scholar 

  • Kang SH, Fryxell GA (1991) Most abundant diatom species in water column assemblages from five ODP Leg 119 drill sites in Prydz Bay, Antarctica: distributional patterns. In: Barron J, Larsen B (eds) Proceedings of the ODP Scientific Results, 119 (Ocean Drilling Program). College Station, TX, pp 645–666

    Google Scholar 

  • Kim YH, Voulgaris G (2003) Estimation of suspended sediment concentration in estuarine environments using acoustic backscatter from an ADCP. In: Proceedings of Coastal Sediments’ 03. CD-ROM. World Scientific Corporation and East Meat West Production, Clearwater Beach, FL

    Google Scholar 

  • Kim YH, Ha HK, Lee SH, Kim HC, Lee HJ, Hwang B, Park JH (2015) Entrainment induced by near-inertial drift of sea ice and its impact on under-ice biogeochemical processes in marginal ice zones. Deep-Sea Res Pt II. doi:10.1016/j.dsr2.2014.05.019

    Google Scholar 

  • Krishfield R, Toole J, Proshutinsky A, Timmermans M-L (2008) Automated ice-tethered profilers for seawater observations under pack ice in all seasons. J Atmos Ocean Tech 25:2091–2105

    Article  Google Scholar 

  • Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophys Res-Oceans 114:C07005. doi: 10.1029/2009JC005312

  • Lee SH, McRoy CP, Joo HM, Gradinger R, Cui X, Yun MS, Chung KH, Kang S-H, Kang C-K, Choy EJ, Son SH, Carmack E, Whitledge TE (2011) Holes in progressively thinning Arctic sea ice lead to new ice algae habitat. Oceanography 24(3):302–308

    Article  Google Scholar 

  • Lee CM, Cole S, Doble M, Freitag L, Hwang P, Jayne S, Jeffries M, Krishfield R, Maksym T, Maslowski W, Owens B, Posey P, Rainville L, Shaw B, Stanton T, Thomson J, Timmermans M-L, Toole J, Wadhams P, Wilkinson J, Zhang Z (2012) Marginal ice zone (MIZ) program: science and experiment plan. Technical Report APL-UW 1201, Applied Physics Laboratory, University of Washington, Seattle, 48 p

    Google Scholar 

  • Lee TH, Hanes DH (1995) Direct inversion method to measure the concentration profile of suspended particles using backscattered sound. J Geophys Res 100(C2):2649–2657. doi: 10.1029/94JC03068.

    Article  Google Scholar 

  • Loose B, Miller LA, Elliott S, Papakyriakou T (2011) Sea ice biogeochemistry and material transport across the frozen interface. Oceanography 24(3):202–218

    Article  Google Scholar 

  • Lowry KE, van Dijken GL, Arrigo KR (2014) Evidence of underice phytoplankton blooms in the Chukchi Sea from 1998 to 2012. Deep-Sea Res Pt II 105:105–117

    Article  Google Scholar 

  • Macdonald RW, Solomon SM, Cranston RE, Welch HE, Yunker MB, Gobeil C (1998) A sediment and organic budget for the Canadian Beaufort Shelf. Mar Geol 144:255–273

    Article  Google Scholar 

  • Maslanik J, Stroeve J, Fowler C, Emery W (2011) Distribution and trends in Arctic sea ice age through spring 2011. Geophys Res Lett 38:L13502

  • McPhee MG, Morison JH (2001) Under-ice boundary layer. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of Ocean Sciences. Academic, San Diego, California, pp 3069–3076

    Google Scholar 

  • Mizobata K, Shimada K, Woodgate R, Saitoh S-I, Wang J (2010) Estimation of heat flux through the eastern Bering Strait. J Oceanogr 66:405–424

    Article  Google Scholar 

  • Mundy CJ, Ehn JK, Barber DG, Michel C (2007) Influence of snow cover and algae on the spectral dependence of transmitted irradiance through Arctic landfast first-year sea ice. J Geophys Res 112:C03007. doi: 10.1029/2006JC003683

  • Nürnberg D, Wollenburg I, Dethleff D, Eicken H, Kassens H, Letzig T, Reimnitz E, Thiede J (1994) Sediments in Arctic sea ice: implications for entrainment, transport and release. Mar Geol 119:185–214

    Article  Google Scholar 

  • O’Brien MC, Macdonald RW, Melling H, Iseki K (2006) Particle fluxes and geochemistry on the Canadian Beaufort Shelf: Implications for sediment transport and deposition. Cont Shelf Res 26:41–81

    Article  Google Scholar 

  • Perovich DK, Richter-Menge JA (2009) Loss of sea ice in the Arctic. Annu Rev Mar Sci 1:417–441

    Article  Google Scholar 

  • Pfirman S, Lange MA, Wollenburg I, Schlosser P (1990) Sea ice characteristics and the role of sediment inclusions in deep-sea deposition: Arctic and Antarctic comparisons. In: Bleil U, Thiede J (eds) Geological History of the Polar Oceans: Arctic versus Antarctic. Kluwer, Dordrecht, pp 187–211

    Chapter  Google Scholar 

  • SAMS (2010) SIMBA user guide: SAMS thermometer chain based ice-mass balance array. Scottish Association for Marine Science, Oban, 25 p

    Google Scholar 

  • Sequoia (2011) LISST-Holo: operating manual. Sequoia Scientific Inc., Bellevue, WA, 48 p

    Google Scholar 

  • Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E, McLaughlin F, Zimmermann S, Proshutinsky A (2006) Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett 33:L08605

  • Steele M, Ermold W, Zhang J (2008) Arctic Ocean surface warming trends over the past 100 years. Geophys Res Lett 35:L02614

  • Steele M, Zhang J, Ermold W (2010) Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt. J Geophys Res 115:C11004. doi: 10.1029/2009JC005849

  • Tomas CR (1997) Identifying Marine Phytoplankton. Academic Press, San Diego, CA, 385 p

    Google Scholar 

  • Toole JM, Krishfield RA, Timmermans M-L, Proshutinsky A (2011) The ice-tethered profiler: Argo of the Arctic. Oceanography 24(3):126–135

    Article  Google Scholar 

  • Traykovski P, Wiberg PL, Geyer WR (2007) Observations and modeling of wave-supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf. Cont Shelf Res 27(3–4):375–399

    Article  Google Scholar 

  • Wegner C, Hölemann JA, Dmitrenko I, Kirillov S, Kassens H (2005) Seasonal variations in Arctic sediment dynamics-evidence from 1-year records in the Laptev Sea (Siberian Arctic). Global Planet Change 48:126–140

    Article  Google Scholar 

  • Wegner C, Bauch D, Hölemann JA, Janout MA, Novikhin A, Kasssens H, Timokhov L (2013) Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer. Biogeosci 10:1117–1129

    Article  Google Scholar 

  • Wilkinson JP, Wadhams P, Hughes NE (2007) Modelling the spread of oil under fast sea ice using three-dimensional multibeam sonar data. Geophys Res Lett 34:L22506

  • Woodgate RA, Aagaard K, Weingartner TJ (2005) A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990–1991. Deep-Sea Res Pt II 52:3116–3149

    Article  Google Scholar 

  • Woodgate RA, Weingartner TJ, Lindsay R (2010) The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys Res Lett 37:L01602

  • Woodgate RA, Weingartner TJ, Lindsay R (2012) Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys Res Lett 39:L24603

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Kyung Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, H.K., Kim, Y.H., Lee, H.J. et al. Under-ice measurements of suspended particulate matters using ADCP and LISST-Holo. Ocean Sci. J. 50, 97–108 (2015). https://doi.org/10.1007/s12601-015-0008-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-015-0008-2

Keywords

Navigation