Skip to main content
Log in

Two haplotypes of Lobesia botrana (Denis & Schiffermüller, 1775) predominate in two adjacent regions of southern Turkey

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The study was conducted to determine the genetic structure of Lobesia botrana (Denis and Schiffermüller 1775) (Lepidoptera: Tortricidae) populations from South of Turkey by molecular methods. Mitochondrial DNA cytochrome oxidase gene was used for phylogenetic and population genetic analyses comparing specimens from Mediterranean (MED-TR) and South East Anatolia (SEA-TR) Regions of Turkey with reference sequences from the Middle East and Europe deposited in GenBank. The Turkish specimens were allocated to seven haplotypes. Binary genetic distance between MED-TR and SEA-TR was above 0.6, whereas, between the Middle East and MED-TR was only 0.034. Gene flow was infinite between MED-TR and the Middle East, but was 0.23 between SEA-TR and the Middle East as the lowest. The two common haplotypes from Turkey were placed in two clades on the phylogenetic tree, separated with a bootstrap value of 100. The common haplotype from MED-TR clustered on the same branch at the tree with the sequences from Israel and Greece, whereas, the common haplotype from SEA-TR was close to European haplotypes, with this separation supported by haplotype network analysis. Overall, the results showed that L. botrana populations in these two adjacent geographic regions of Turkey consist mostly of two genetically different haplotypes. This could be a consequence of the cultivars grown, the production methods and/or the climatic conditions in SEA-TR. However, the most prevalent haplotype in MED-TR, with a predominantly Mediterranean climate, is likely to be prevalent in other Mediterranean Basin countries with a similar climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aslan, M. M. (2015). A comparison of the parasitoids of grapevine moths Lobesia botrana (Denis et Schiffermuller) in the vineyards where conventional and mating disruption techniques are applied. Agricultural Journal, 10, 1–6.

    Google Scholar 

  • Aslan, M. M., & Candan, G. (2018). Determining the damage level of the European grapevine moth Lobesia botrana (Denis et Schiffermüller) in different grape varieties. Kahramanmaraş Sütçü İmam University Journal of Agriculture and Nature, 21, 482–488.

    Google Scholar 

  • Bandelt, H.-J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.

    Article  CAS  Google Scholar 

  • Birgücü, A. K., Turanlı, F., Gümüş, E., Güzel, B., & Karsavuran, Y. (2015). The effect of grape cultivars on oviposition preference and larval survival of Lobesia botrana Den. & Schiff. The effect of grape cultivars on oviposition. Fresenius Environmental Bulletin, 24, 33–38.

    Google Scholar 

  • CABI. (2019). Lobesia botrana (European grapevine moth). https://www.cabi.org/isc/datasheet/42794 (31.01.2019).

  • Denis, J. N. C. M & Schiffermüller, I. (1775). Ankündung [sic] eines systematischen Werkes von den Schmetterlingen der Wienergegend, herausgegeben von einigen Lehrern am k.k. Theresianum. A. Bernardi, Vienna, 322 pp.

  • Döös, S. (2013). Genetic differences in Lobesia botrana populations – Related to host plant or geographic origin? Undergraduate thesis, Swedish University of Agricultural Science, Uppsala, Sweden. 43 pp.

  • Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.

    CAS  Google Scholar 

  • Friedheim, S. (2016). Comparison of species identification methods DNA barcoding versus morphological taxonomy. Mānoa Horizons, 1, 74–86.

    Google Scholar 

  • Gilligan, T. M., Epstein, M. E., Passoa, S. C., Powell, J. A., Sage, O. C., & Brown, J. W. (2011). Discovery of Lobesia botrana ([Denis & Schiffermüller]) in California: An invasive species new to North America (Lepidoptera: Tortricidae). Proceedings of the Entomological Society of Washington, 113, 14–30.

    Article  Google Scholar 

  • İyriboz, N. (1938). Bağ Hastalıkları. T. C. Ziraat Vekaleti Neşriyatı Umumi Sayısı: 323 Ziraat Hastalıkları, 2, 245.

  • Janzen D H, Burns J M, Cong Q, Hallwachs W Dapkey T, Manjunath R, Hajibabaei M, Herbert P D N & Grishin N V (2017). Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology. Proceedings of the National Academy of Sciences, 114(31), 8313–8318.

  • Jost, L. (2008). GST and its relatives do not measure differentiation. Molecular Ecology, 17, 4015–4026.

    Article  Google Scholar 

  • Karataş, H., Karataş, D. D., Ozdemir, G., & Demiraslan, R. (2010). The potential using for industry of southeast region grape varieties (pp. 256–261). Diyarbakır: UDUSİS.

    Google Scholar 

  • Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.

    Article  CAS  Google Scholar 

  • Lukhtanov, V. A., Dantchenko, A. V., Vishnevskaya, M. S., & Saifitdinova, A. F. (2015). Detecting cryptic species in sympatry and allopatry: Analysis of hidden diversity in Polyommatus (Agrodiaetus) butterflies (Lepidoptera: Lycaenidae). Biological Journal of the Linnean Society, 116, 468–485.

    Article  Google Scholar 

  • Maher N & Thiéry D (2006). Daphne gnidium, a possible native host plant of the European grapevine moth Lobesia botrana, stimulates its oviposition. Is a host shift relevant?. Chemoecology, 16(3), 135–144.

  • Mayr, E. (1979). Sistematik Zoolojinin Prensipleri. Çeviren: Niyazi Lodos. Ege Üniversitesi Ziraat Fakültesi Yayınları No 298 (p. 360). İzmir: Ege Üniversitesi Matbaası.

    Google Scholar 

  • Muller, K., Thiéry, D., Delbac, L., & Moreau, J. (2017). Mating patterns of the European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae) in sympatric and allopatric populations. Biological Journal of the Linnean Society, 120, 685–699.

    Google Scholar 

  • Razowski, J., & Tarcz, S. (2014). Molecular variability of the COI fragment supports the systematic position of Enarmoniini within the subfamily Olethreutinae (Lepidoptera: Tortricidae). FoliaBiologica (Kraków), 62, 91–96.

    Article  CAS  Google Scholar 

  • Reineke, A., Assaf, H., Kulanek, D., Mori, N., Pozzebon, A., & Duso, C. (2015). A novel set of microsatellite markers for the European grapevine moth Lobesia botrana isolated using next-generation sequencing and their utility for genetic characterization of populations from Europe and the Middle East. Bulletin of Entomological Research, 105, 408–416.

    Article  CAS  Google Scholar 

  • Saeid, K., & Kavoosi, B. (2011). Seasonal flight activity of the grape berry moth, Lobesia botrana den. And Schiff. (Lepidoptera: Tortricidae) in Sisakht region, Iran. African Journal of Agricultural Research, 6, 3568–3573.

    Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–404.

    CAS  PubMed  Google Scholar 

  • Sciarretta, A., Zinni, A., Mazzocchetti, A., & Trematerra, P. (2008). Spatio-temporal distribution of Lobesia botrana (Denis & Schiffermüller) male population in a Central Italy agro-ecosystem. IOBC/WPRS Bulletin, 36, 337–342.

    Google Scholar 

  • Sharma, M., Fomda, B. A., Mazta, S., Sehgal, R., Bagicha Singh, B., & Malla, N. (2013). Genetic diversity and population genetic structure analysis of Echinococcus granulosus sensu stricto complex based on mitochondrial DNA signature. PLoS One, 8, e82904. https://doi.org/10.1371/journal.pone.0082904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söylemezoğlu, G., Atak, A., Boz, Y., Ünal, A., & Sağlam, M. (2016). Viticulture in Turkey. Chronica Horticulturae, 56, 27–31.

    Google Scholar 

  • Spencer, H. G. (2000). Population genetics and evolution of genomic imprinting. Annual Review of Genetics, 34, 457–477.

    Article  CAS  Google Scholar 

  • Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.

    CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  Google Scholar 

  • Tay, W. T. (2016). Rapid molecular DNA identification method for the European invasive grapevine moth Lobesia botrana. Canberra: CSIRO.

    Google Scholar 

  • Terral, J. F., Tabard, E., Bouby, L., Ivorra, S., Pastor, T., Figueiral, I., Picq, S., Chevance, J. B., Jung, C., Fabre, L., Tardy, C., Compan, M., Bacilieri, R., Lacombe, T., & This, P. (2010). Evolution and history of grapevine (Vitis vinifera) under domestication: New morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Annals of Botany, 105, 443–455. https://doi.org/10.1093/aob/mcp298.

    Article  PubMed  Google Scholar 

  • Uygun, N., Ulusoy, M. R., Karaca, İ., & Satar, S. (2010). Üzümsü meyve zararlıları. Meyve ve bağ zararlıları (pp. 123–152). Adana: Özyurt Matbaacılık, Adana.

    Google Scholar 

  • Vouillamoz, J. F., McGovern, P. E., Ergul, A., Söylemezoğlu, G., Tevzadze, G., Meredith, C. P., & Grando, M. S. (2006). Genetic characterization and relationships of traditional grape cultivars from Transcaucasia and Anatolia. Plant Genetic Resources, 4, 144–158.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our thanks for the support of Kahramanmaraş Sütçü İmam University (Project no: 2017/2-56 M) and Çukurova University Biotechnology Research and Application Center. Also we thank Dr. Mustafa Özdemir for morphological identification of the specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gül Satar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satar, G., Aslan, M.M. & Ücük, C. Two haplotypes of Lobesia botrana (Denis & Schiffermüller, 1775) predominate in two adjacent regions of southern Turkey. Phytoparasitica 48, 149–158 (2020). https://doi.org/10.1007/s12600-020-00784-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00784-w

Keywords

Navigation