Skip to main content
Log in

Effect of irrigation regimes and artificial mycorrhization on insect pest infestations and yield in tomato crop

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

A 2-year field experiment was carried out to test the effect of root symbionts treatments in combination with different watering levels on tomato yield and pest infestation rates. A split-plot experimental design was followed, where the main treatments were three irrigation regimes, and the subplot factor was the mycorrhizal treatment (two mycorrhizal treatments [M1 and M2] and the control). The M1 treatment consisted in the use of a commercial preparation (Micosat F; CCS Aosta, Italy) containing a mixture of vesicular-arbuscular mycorrhizae (VAM), bacteria of the rhizosphere and saprophytic fungi, while M2 treatment used only arbuscular mycorrhizal fungi. Insect pests sampled in the field during the 2 years of experiment were all sap-feeders (Trialeurodes vaporariorum, Macrosiphum euphorbiae, Frankliniella occidentalis and an unidentified species of leafhopper). Results did not show any impact of root symbionts on pests, whereas water deficit significantly reduced plant infestation rates. Both mycorrhization treatments and water supply resulted in a significantly positive effect on crop yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation Drainage, Paper 56. Food and Agriculture Organization of United Nations (FAO), Rome, Italy.

  • Andret-Link, P., & Fuchs, M. (2005). Transmission specificity of plant viruses by vectors. Journal of Plant Pathology, 87, 153–165.

    Google Scholar 

  • Augè, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.

    Article  Google Scholar 

  • Baslam, M., & Goicoechea, N. (2011). Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza, 22, 347–359.

    Article  PubMed  CAS  Google Scholar 

  • Battaglia, D., Bossi, S., Cascone, P., Digilio, M. C., Duran Prieto, J., Fanti, P., et al. (2013). Tomato belowground–aboveground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Molecular Plant-Microbe Interactions. doi:10.1094/MPMI-02-13-0059-R.

    PubMed  Google Scholar 

  • Brundrett, M. C., Piché, Y., & Peterson, R. L. (1983). A new method for observing the morphology of vesicular arbuscular mycorrhizas. Canadian Journal of Botany, 62, 2128–2134.

    Article  Google Scholar 

  • Candido, V., Miccolis, V., & Perniola, M. (2000). Effects of irrigation regime on yield and quality of processing tomato (Lycopersicon esculentum Mill.) cultivars. Acta Horticulturae, 537, 779–788.

    Google Scholar 

  • Çıkman, E., & Civelek, H. S. (2006). Population densities of Liriomyza cicerina (Rondani, 1875) on Cicer arietinum L. in different irrigated conditions. Türkiye Entomoloji Dergisi, 30, 3–10.

    Google Scholar 

  • Çıkman, E., Çömlekçioğlu, N., & Şimşek, M. (2011). Effects of different irrigation levels on population densities of Liriomyza trifolii (Burgess, 1880) on two vegetable soybean (Glycine max (L.) Merr.) cultivars. Harran Üniversitesi Ziraat Fakültesi Dergisi, 15, 29–35.

    Google Scholar 

  • Conversa, G., Elia, A., & La Rotonda, P. (2007). Mycorrhizal inoculation and phosphorus fertilization effect on growth and yield of processing tomato. Acta Horticulturae, 758, 333–338.

    CAS  Google Scholar 

  • Cosme, M., Stout, M. J., & Wurst, S. (2011). Effect of arbuscular mycorrhizal fungi (Glomus intraradices) on the oviposition of rice water weevil (Lissorhoptrus oryzophilus). Mycorrhiza, 21, 651–658.

    Article  PubMed  Google Scholar 

  • Dalpé, Y., & Monreal, M. (2004). Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Online Crop Management doi:10.1094/CM-2004-0301-09-RV, http://www.plantmanagementnetwork.org/pub/cm/review/2004/amfungi/. Accessed 5 February 2013.

  • Davies, F. T., Jr., Potter, J. R., & Linderman, R. G. (1993). Drought resistance of mycorrhizal pepper plants independent of leaf P concentration - response in gas exchange and water relations. Physiologia Plantarum, 87, 45–53.

    Article  CAS  Google Scholar 

  • Dicke, M. (2000). Chemical ecology of host-plant selection by herbivorous arthropods: a multitrophic perspective. Biochemical Systematics and Ecology, 28, 601–617.

    Article  PubMed  CAS  Google Scholar 

  • Doorenbons, J., & Pruitt, W. O. (1977). Guidelines for predicting crop requirements. FAO irrigation and drainage paper no. 24. Food and Agriculture Organization of United Nations, Rome, Italy.

  • Du, Y., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J., & Woodcock, C. M. (1998). Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. Journal of Chemical Ecology, 24, 1355–1368.

    Article  CAS  Google Scholar 

  • El-Mesbahi, M. N., Azcón, R., Ruiz-Lozano, J. M., & Aroca, R. (2012). Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants. Mycorrhiza, 22, 555–564.

    Article  PubMed  CAS  Google Scholar 

  • Favati, F., Lovelli, S., Galgano, F., Miccolis, V., Di Tommaso, T., & Candido, V. (2009). Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae, 122, 562–571.

    Article  Google Scholar 

  • Fritz, M., Jakobsen, I., Lyngkjær, M. F., Thordal-Christensen, H., & Pons-Kühnemann, J. (2006). Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza, 16, 413–419.

    Article  PubMed  Google Scholar 

  • Gange, A. C. (2001). Species-specific responses of a root- and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytologist, 150, 611–618.

    Article  Google Scholar 

  • Gouinguené, S. P., & Turlings, T. C. J. (2002). The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiology, 129, 1296–1307.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goverde, M., Van der Heijden, M. G. A., Wiemken, A., Sanders, I. R., & Erhardt, A. (2000). Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia, 125, 362–369.

    Article  Google Scholar 

  • Guerrieri, E., Lingua, G., Digilio, M. C., Massa, N., & Berta, G. (2004). Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecological Entomology, 29, 753–756.

    Article  Google Scholar 

  • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1, 96–99.

    Article  Google Scholar 

  • Harrison, M. J., & van Buuren, M. L. (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 378, 626–629.

    Article  PubMed  CAS  Google Scholar 

  • Hodge, A., Campbell, C. D., & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297–299.

    Article  PubMed  CAS  Google Scholar 

  • Huberty, A. F., & Denno, R. F. (2004). Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology, 85, 1383–1398.

    Article  Google Scholar 

  • Inbar, M., Doostdar, H., & Mayer, R. T. (2001). Suitability of stressed and vigorous plants to various insect herbivores. Oikos, 94, 228–235.

    Article  Google Scholar 

  • Karagiannidis, N., Bletsos, F., & Stavropoulos, N. (2002). Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Scientia Horticulturae, 94, 145–156.

    Article  CAS  Google Scholar 

  • Lamp, W. O., & Zhao, L. (1993). Prediction and manipulation of movement by polyphagous, highly mobile pests. Journal of Agricultural Entomology, 10, 267–281.

    Google Scholar 

  • Lee, B. R., Muneer, S., Avice, J. C., Jung, W. J., & Kim, T. H. (2012). Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza, 22, 525–534.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J. Y., Maldonado-Mendoza, I., Lopez-Meyer, M., Cheung, F., Town, C. D., & Harrison, M. J. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. The Plant Journal, 50, 529–544.

    Article  PubMed  CAS  Google Scholar 

  • Patanè, C., & Cosentino, S. L. (2010). Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agricultural Water Management, 97, 131–138.

    Article  Google Scholar 

  • Patanè, C., Tringali, S., & Sortino, O. (2011). Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Scientia Horticulturae, 129, 590–596.

    Article  Google Scholar 

  • Perniola, M., Rivelli, A. R., & Candido, V. (1994). Yield response to water and stress indexes on tomato. Acta Horticulturae, 376, 215–226.

    Google Scholar 

  • Rivelli, A. R., Toma, I., Trotta, V., Fanti, P., De Maria, S., & Battaglia, D. (2012). Combined effect of water stress and Macrosiphum euphorbiae infestation on plant growth in tomato. In: F. Stoddard, & P. Mäkelä, 12th Congress of the European Society for Agronomy (Helsinki, Finland; vol. 1, pp. 334-335).

  • Rivelli, A. R., Trotta, V., Toma, I., Fanti, P., & Battaglia, D. (2013). Relation between plant water status and Macrosiphum euphorbiae (Hemiptera: Aphididae) population dynamics on three cultivars of tomato. European Journal of Entomology, 110, 617–625.

    Article  Google Scholar 

  • Sasso, R., Iodice, L., Digilio, M. C., Carretta, A., Ariati, L., & Guerrieri, E. (2007). Host-locating response by the aphid parasitoid Aphidius ervi to tomato plant volatiles. Journal of Plant Interactions, 2, 175–183.

    Article  CAS  Google Scholar 

  • Thomas, M. B., & Waage, J. K. (1996). Integration of biological control and host plant resistance breeding: a scientific and literature review. Wageningen, the Netherlands: Technical Center for Agriculture and Rural Cooperation of the European Union.

    Google Scholar 

  • Trouvelot, A., Kough, J. L., & Gianinazzi-Pearson, V. (1986). Mesure du taux de mycorrhization VA d’un systeme radiculaire. Recherce de méthodes d’estimation ayant une signification fonctionelle, (pp. 217-221) In: V. Gianninazzi-Pearson & S. Gianninazzi (Eds.) Mycorrhiza: physiology and genetics. Paris, France: INRA.

    Google Scholar 

  • van Dam, N. M., Harvey, J. A., Wäckers, F. L., Bezemer, T. M., Van der Putten, W. H., & Vet, L. E. M. (2003). Interactions between aboveground and belowground induced responses against phytophages. Basic and Applied Ecology, 4, 63–77.

    Article  Google Scholar 

  • Vázquez, M. M., César, S., Azcón, R., & Barea, J. M. (2000). Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology, 15, 261–272.

    Article  Google Scholar 

  • Vickers, C. E., Gershenzon, J., Lerdau, M. T., & Loreto, F. (2009). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 5, 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Viggiani, G. (1997). Lotta biologica e integrata nella difesa fitosanitaria. Napoli, Italy: Liguori Editore.

    Google Scholar 

  • Vos, C., Geerinckx, C. K., Mkandawire, R., Panis, B., De Waele, D., & Elsen, A. (2012). Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato. Mycorrhiza, 22, 157–163.

    Article  PubMed  Google Scholar 

  • Walter, G. H. (2005). Insect pest management and ecological research. New York, NY: Cambridge University Press.

    Google Scholar 

  • Webster, B., Bruce, T., Dufour, S., Birkemeyer, C., Birkett, M., Hardie, J., et al. (2008). Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. Journal of Chemical Ecology, 34, 1153–1161.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, L. T., Trichilo, P. J., & Gonzalez, D. (1991). Spider mite (Acari: Tetranychidae) infestation rate and initiation: effect on cotton yield. Journal of Economic Entomology, 84, 593–600.

    Google Scholar 

  • Zar, J. H. (1984). Biostatistical analysis. Englewood Cliffs, NJ, USA: Prentice-Hall.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of Agriculture and Forestry Policies (MIPAF), research project PROM (Progetto di Ricerca per potenziare la competitività di Orticole in aree Meridionali – Research Project to strengthen competitiveness of vegetables in southern areas –funds C.I.P.E., Resolution 17/2003, Scientific coordinator: Dr. Agostino Falavigna); and by the Italian Ministry of Education, University and Scientific Research (MIUR), research project PRIN (Pratiche agronomiche e qualità della pianta: influenza sul secondo e terzo livello trofico – [Agronomic practices and plant quality: influence on the second and third trophic level] Scientific coordinator: Prof. Donatella Battaglia).

We express our appreciation to Paolo Putignano and Cosimo Danzi for their valuable help in conducting experimental trials and collecting agronomic data. We thank Prof. Luciana Tavella for taxonomic determination of Macrolophus pygmaeus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatella Battaglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colella, T., Candido, V., Campanelli, G. et al. Effect of irrigation regimes and artificial mycorrhization on insect pest infestations and yield in tomato crop. Phytoparasitica 42, 235–246 (2014). https://doi.org/10.1007/s12600-013-0356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-013-0356-3

Keywords

Navigation