Skip to main content
Log in

Shift of sensitivity of Botrytis cinerea to azoxystrobin in greenhouse vegetables before and after exposure to the fungicide

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

From 2004 to 2006, 213 isolates of Botrytis cinerea never exposed to QO center inhibitors (QOIs) were collected to determine the baseline sensitivity to azoxystrobin. In the absence of salicylhydroxamic acid (SHAM), the mean EC50 values were 10.49 ± 13.12 and 0.36 ± 0.48 mg l−1 for inhibiting mycelial growth and conidium germination, respectively. In the presence of SHAM, the mean EC50 values were 2.24 ± 1.29 and 0.22 ± 0.11 mg l−1. In 2010, five azoxystrobin-resistant isolates were detected with the resistance frequency of 2.25% in greenhouse tomatoes after 4 years of continuous exposure. These resistant isolates showed cross-resistance to other QOIs but not to boscalid. In addition, these resistant isolates had comparable growth, sporulation and pathogenicity ability as sensitive isolates and maintained resistance in plants and the presence of SHAM. The G143A point mutation predicted to cause a change from glycine to alanine at codon 143 of cyt b gene was found in all resistant isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avila-Adame, C., & Köller, W. (2003). Impact of alternative respiration and target-site mutations on responses of germinating conidia of Magnaporthe grisea to Qo-inhibiting fungicides. Pest Management Science, 59, 303–309.

    Article  PubMed  CAS  Google Scholar 

  • Banno, S., Yamashita, K., Fukumori, F., Okada, K., Uekusa, H., Takagaki, M., et al. (2009). Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene. Plant Pathology, 58, 120–129.

    Article  CAS  Google Scholar 

  • Baroffio, C. A., Siegfried, W., & Hilber, U. W. (2003). Long-term monitoring for resistance of Botrytis cinerea to anilinopyrimidine, phenylpyrrole, and hydroxyanilide fungicides in Switzerland. Plant Disease, 87, 662–666.

    Article  CAS  Google Scholar 

  • Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649–662.

    Article  PubMed  CAS  Google Scholar 

  • Brent, K. J., & Hollomon, D. W. (1998). Fungicide resistance: the assessment of risk. FRAC Monograph 2, GCPF, Brussels, Belgium (now CropLife International). Available on line at www.frac.info.

  • Dianez, F., Santos, M., & Blanco, R. (2002). Fungicide resistance in Botrytis cinerea isolates from strawberry crops in Huelva (southwestern Spain). Phytoparasitica, 30, 529–534.

    Article  CAS  Google Scholar 

  • Elad, Y. (1992). Reduced sensitivity of Botrytis cinerea to two sterol biosynthesis-inhibiting fungicides: fenetrazole and fenethanil. Plant Pathology, 41, 47–54.

    Article  CAS  Google Scholar 

  • Ishii, H., Fraaije, B. A., Sugiyama, T., Nogouchi, K., Nishimura, K., Takeda, T., et al. (2001). Occurrence and molecular characterization of strobilurin resistance in cucumber powdery and downy mildew. Phytopathology, 91, 1166–1171.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J. H., Ding, L. S., Michiailides, T. J., Li, H. Y., & Ma, Z. H. (2009). Molecular characterization of field azoxystrobin-resistant isolates of Botrytis cinerea. Pesticide Biochemistry and Physiology, 93, 72–76.

    Article  CAS  Google Scholar 

  • Joseph-Horne, T., & Hollomon, D. W. (2000). Functional diversity within the mitochondrial electron transport chain of plant pathogenic fungi. Pest Management Science, 56, 24–30.

    Article  CAS  Google Scholar 

  • Joseph-Horne, T., Hollomon, D. W., & Wood, P. M. (2001). Fungal respiration: a fusion of standard and alternative components. Biochimica et Biophysica Acta: Bioenergetics, 1504, 179–195.

    Article  CAS  Google Scholar 

  • Kang, L. J., Zhang, X. F., Wang, W. Q., Ma, Z. Q., & Ma, Z. Q. (2000). Estimation of fungicide-resistance and fitness of Botrytis cinerea. Chinese Journal of Pesticide Science, 2, 39–42.

    CAS  Google Scholar 

  • Katan, T. (1983). Resistance to 3, 5-dichlorophenyl-N-cylicimide (dicarboximide) fungicides in the grey mould pathogen Botrytis cinerea on protected crops. Plant Pathology, 31, 133–141.

    Article  Google Scholar 

  • Köller, W., Avila-Adame, C., Olaya, G., & Zheng, D. (2001).Resistance to strobilurin fungicides. In: J. M. Clark, & I. Yamaguchi (Eds.), Agrochemical resistance-extent, mechanism, and detection (pp. 215–229). Washington DC: American Chemical Society.

  • Latorre, B. A., Flores, V., & Sara, A. (1994). Dicarboximide-resistant isolates of Botrytis cinerea from table grapes in Chile: survey and characterization. Plant Disease, 78, 990–994.

    Google Scholar 

  • Leroux, P., Chapeland, F., Desbrosses, D., & Gredt, M. (1999). Patterns of cross-resistance to fungicides in Botrytis cinerea isolates from French vineyards. Crop Protection, 18, 687–697.

    Article  CAS  Google Scholar 

  • Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., et al. (2002). Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Management Science, 58, 876–888.

    Article  PubMed  CAS  Google Scholar 

  • Leroux, P., Gredt, M., Leroch, M., & Walker, A. S. (2010). Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Applied and Environmental Microbiology, 76, 6615–6630.

    Article  PubMed  CAS  Google Scholar 

  • Margot, P., Huggenberger, F., Amrein, J., & Weiss, B. (1998). CGA279202: a novel broad spectrum strobilurin fungicide. Brighton Crop Protection Conference—Pests and Diseases, 2, 375–382.

    Google Scholar 

  • Markoglou, A. N., Malandrakis, A. A., Vitoratos, A. G., & Ziogas, B. N. (2006). Characterization of laboratory mutants of Botrytis cinerea resistant to QoI fungicides. European Journal of Plant Pathology, 115, 149–162.

    Article  CAS  Google Scholar 

  • Migeuz, M., Reeve, C., Wood, P. M., & Hollomon, D. W. (2004). Alternative oxidase reduces the sensitivity of Mycosphaerella graminicola. Pest Management Science, 60, 3–7.

    Article  Google Scholar 

  • Olaya, G., & Köller, W. (1999a). Baseline sensitivities of Venturia inaequalis populations to the strobilurin fungicide kresoxim-methyl. Plant Disease, 83, 273–278.

    Article  Google Scholar 

  • Olaya, G., & Köller, W. (1999b). Diversity of kresoxim-methyl sensitivities in baseline populations of Venturia inaequalis. Pesticide Science, 55, 1083–1088.

    Article  CAS  Google Scholar 

  • Prins, T. W., Tudzynski, P., & Tiedemann, A. V. (2000). Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In: J. W. Kronstad (Ed.), Fungi pathology (pp. 33–64). Dordrecht, the Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Rosslenbroich, H. J., & Stuebler, D. (2000). Botrytis cinerea—history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–561.

    Article  CAS  Google Scholar 

  • Russell, P. E. (2004). Sensitivity baselines in fungicide resistance research and management. FRAC Monograph 3. Brussels, Belgium: CropLife International. Available on line at www.frac.info.

    Google Scholar 

  • Sierotzki, H., Wullschleger, J., & Gisi, U. (2000). Point mutation in cytochrome b gene conferring resistance to strobilurin fungicides in Erysiphe graminis f.sp. tritici field isolates. Pesticide Biochemistry & Physiology, 68, 107–112.

    Article  CAS  Google Scholar 

  • Zhang, C. Q., Hu, J. L., Wei, F. L., & Zhu, G. N. (2009). Evolution of resistance to different classes of fungicides in Botrytis cinerea from greenhouse vegetables in eastern China. Phytoparasitica, 37, 351–359.

    Article  CAS  Google Scholar 

  • Zhang, C. Q., Liu, S. Y., & Zhu, G. N. (2010). Detection and characterization of benzimidazole resistance of Botrytis cinerea in greenhouse vegetables. European Journal of Plant Pathology, 126, 509–515.

    Article  CAS  Google Scholar 

  • Zhang, C. Q., Yuan, S. K., Sun, H. Y., Qi, Z. Q., Zhou, M. G., & Zhu, G. N. (2007). Sensitivity of Botrytis cinerea from vegetable greenhouses to boscalid. Plant Pathology, 56, 646–653.

    Article  CAS  Google Scholar 

  • Zhang, C. Q., Zhang, Y., Wei, F. L., Liu, S. Y., & Zhu, G. N. (2006a). Detection of resistance of Botrytis cinerea from protected vegetables to different classes of fungicides. Chinese Journal of Pesticide Science, 8, 245–249.

    CAS  Google Scholar 

  • Zhang, Y., Li, H. Y., Zhang, C. Q., Liu, S. Y., & Zhu, G. N. (2006b). A preliminary study of the relationship between alternative respiration and sensitivity of growth rate in Botrytis cinerea collected from vegetable greenhouses to azoxystrobin. Chinese Journal of Pesticide Science, 8, 306–312.

    CAS  Google Scholar 

  • Zheng, D., Olaya, G., & Köller, W. (2000). Characterization of a laboratory mutant of Venturia inaequalis resistant to the strobilurin related fungicide kresoxim-methyl. Current Genetics, 38, 148–155.

    Article  PubMed  CAS  Google Scholar 

  • Ziogas, N. B., Baldwin, C. B., & Young, E. J. (1999). Alternative respiration: a biochemical mechanism of resistance to azoxystrobin (ICIA5504) in Septoria tritici. Pesticide Science, 50, 28–34.

    Article  Google Scholar 

Download references

Acknowledgments

This research was part of Project 31071711 supported by NSFC, grant no. Y3090378, of the Zhejiang Natural Science Foundation, and Project 2010C32083 of the Zhejiang Public-Interest Technology Application Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-qing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Cq., Liu, Yh., Ding, L. et al. Shift of sensitivity of Botrytis cinerea to azoxystrobin in greenhouse vegetables before and after exposure to the fungicide. Phytoparasitica 39, 293–302 (2011). https://doi.org/10.1007/s12600-011-0159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-011-0159-3

Keywords

Navigation