Skip to main content
Log in

Molecular variability among isolates of Mycosphaerella graminicola, the causal agent of septoria tritici blotch, in Argentina

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The genetic structure and diversity of Mycosphaerella graminicola population were studied with ISSR molecular markers, using isolates from several locations of the Argentinean wheat region: subregion IV (SE of Buenos Aires Province) and II South (central part of Buenos Aires Province). Samples were taken from different bread wheat (Triticum aestivum) cultivars. A total of 126 isolates were subjected to molecular analysis to compare the genetic structure of the isolates from both wheat subregions. Ten ISSR primers were used: (GACA)4; (AAC)7; (ATC)7; (AC)9; (AAG)7; (AG)9; (AGC)5; (CAG)5, (GTG)5 and (GACAC)3. Eighty-four bands ranging from 200 bp to 8.000 were amplified. Eighty-one distinct haplotypes were identified and 43 isolates did not generate any amplification products. The highest number of polymorphic DNA fragments were produced using ISSR primers (ATC)7 and (GTG)5, which detected bands in 38 isolates. The molecular analysis revealed the existence of 81 different haplotypes among the 126 isolates studied. These results revealed a high degree of genetic diversity in the M. graminicola population in Argentina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Annone, J., Calzolari, A., Polidoro, O., & Conta, H. (1991). Efecto de la mancha de la hoja causada por Septoria tritici sobre el rendimiento. Inta EEA Pergamino. Informe nº 122.

  • Annone, J., Conta, H., Polidoro, O., & Calzolari, A. (1993). Información adicional sobre el efecto de ‘mancha de la hoja’ causada por Septoria tritici sobre los rendimientos. Inta EEA Pergamino. Informe nº 146.

  • Boeger, J. M., Chen, R. S., & McDonald, B. A. (1993). Gene flow between geographic populations of Mycosphaerella graminicola (anamorph Septoria tritici) detected with restriction fragment length polymorphism markers. Phytopathology, 83, 1147–1154.

    Article  Google Scholar 

  • Bornet, B., & Branchard, M. (2001). Nonanchored inter sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Molecular Biology Report, 19, 209–215.

    Article  CAS  Google Scholar 

  • Chen, R. S., Boeger, M., & McDonald, B. A. (1994). Genetic stability in a population of a pathogen in fungus over time. Molecular Ecology, 3, 209–218.

    Article  Google Scholar 

  • Chen, R. S., & McDonald, B. A. (1996). Reproduction plays a major role in the genetic structure of populations of the fungus Mycosphaerella graminicola. Genetics, 142, 1119–1127.

    CAS  PubMed  Google Scholar 

  • Cordo, C. A., Linde, C. C., Zhan, J., & McDonald, B. (2006). Genotypic diversity of the wheat leaf blotch pathogen (Septoria tritici) in Buenos Aires province. Sociedad Argentina Botánica, 41, 293–305.

    Google Scholar 

  • Cordo, C. A., Perelló, A. E., Alippi, H. E., & Arriaga, H. O. (1990). Presencia de Mycosphaerella graminicola (Fuckel) Schroeter teleomorfo de Septoria tritici Rob. ex Desm. en trigos maduros de la Argentina. Revista Facultad Agronomía, 66(67), 49–55.

    Google Scholar 

  • Czembor, P. C., & Arseniuk, E. (1999). Study of genetic variability among monopycnidial and monopycnidiospore isolates derived from single pycnidia of Stagonospora ssp. and Septoria tritici with the use of RAPD-PCR, MP-PCR and rep-PCR techniques.. Phytopathology, 147, 539–546.

    Article  Google Scholar 

  • Eyal, Z., Scharen, M. D., Dhuffman, M., & Prescott, J. M. (1985). Global insights into virulence frequencies of Mycosphaerella graminicola. Phytopathology, 75, 1456–1462.

    Article  Google Scholar 

  • Eyal, Z., Scharen, A. L., Prescott, J. M., & van Ginkel, M. (1987). The Septoria diseases of wheat: Concepts and methods of disease management. México, D.F: International Maize and Wheat Improvement Center (CIMMYT).

    Google Scholar 

  • Ferreira, M. E., & Grattapaglia, D. (1998). Introdução ao uso de marcadores moleculares em análise genética (3rd ed.). Brasilia, D.F., Brazil: Embrapa-Cenargen.

    Google Scholar 

  • Goodwin, S., van der Lee, T., Cavaletto, J., Hekkert, B., Crane, C., & Kema, G. (2007). Identification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the septoria tritici blotch pathogen Mycosphaerella graminicola. Fungal Genetics and Biology, 44, 398–414.

    Article  CAS  PubMed  Google Scholar 

  • Jürgens, T., Linde, C., & McDonald, B. (2006). Genetic structure of Mycosphaerella graminicola populations from Iran, Argentina, and Australia. European Journal of Plant Pathology, 115, 223–233.

    Article  Google Scholar 

  • Kabbage, M., Leslie, J. F., Zeller, K. A., Hulbert, S. H., & Bockus, W. W. (2008). Genetic diversity of Mycosphaerella graminicola, the causal agent of septoria tritici blotch, in Kansas winter. Journal of Agricultural, Food and Environmental Sciences, 2(1).

  • Kema, G. H. J., Goodwin, S. B., Hamza, S., Verstappen, E. C. P., Cavaletto, J. R., van der Lee, T. A. J., et al. (2002). A combined AFLP and RAPD genetic linkage map of Mycosphaerella graminicola, the septoria tritici leaf blotch pathogen of wheat. Genetics, 161, 1497–1505.

    CAS  PubMed  Google Scholar 

  • Kema, G. H. J., Verstappen, E. C. P., Todorova, M., & Waalwijk, C. (1996). Successful crosses and molecular tetrad and progeny analysis demonstrate heterothallism in Mycosphaerella graminicola. Current Genetics, 30, 252–258.

    Article  Google Scholar 

  • Kema, G. H. J., Verstappen, E., van der Lee, T., Mendes, O., Sandbrink, H., Klein-Lankhorst, R., et al. (2003). Gene hunting in Mycosphaerella graminicola. Proceedings of the 22nd Fungal Genetics Conference (Asilomar, CA, USA).

  • King, J. E., Cook, R. J., & Melville, S. C. (1983). A review of Septoria diseases of wheat and barley. Annals of Applied Biology, 103, 345–373.

    Article  Google Scholar 

  • Linde, C. C., Zhan, J., & McDonald, B. A. (2002). Population structure of Mycosphaerella graminicola: from lesions to continents. Phytopathology, 92, 946–955.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, B. A., & Martinez, J. P. (1990). DNA restriction fragment length polymorphism among Mycosphaerella graminicola (anamorph Septoria tritici) isolates collected from a single wheat field. Phytopathology, 80, 1368–1373.

    Article  CAS  Google Scholar 

  • Medini, M., & Hamza, S. (2008). Pathotype and molecular characterization of Mycosphaerella graminicola isolates collected from Tunisia, Algeria, and Canada. Journal of Plant Pathology, 90, 65–73.

    CAS  Google Scholar 

  • Meng, X., & Chen, W. (2001). Applications of AFLP and ISSR techniques in detecting genetic diversity in the soybean brown stem rot pathogen Phialophora gragata. Mycology Research, 105, 936–940.

    Article  CAS  Google Scholar 

  • Moreno, M. V., Stenglein, S. A., Balatti, P. A., & Perelló, A. E. (2008). Pathogenic and molecular variability among isolates of Pyrenophora tritici-repentis, causal agent of tan spot of wheat in Argentina. European Journal of Plant Pathology, 122, 239–252.

    Article  Google Scholar 

  • Nei, M. (1972). Genetic distance between populations. American Naturalist, 106, 283–292.

    Article  Google Scholar 

  • Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences USA, 76, 5269–5273.

    Article  CAS  Google Scholar 

  • Rajaram, S. (1999). Historical aspects and future challenges of an international wheat program. In M. van Ginkel, A. McNab, & J. Krupinsky (Eds.), Septoria and Stagonospora diseases of cereals. A compilation of global research (pp. 1–17). Ciudad de Mexico, D.F., México: CIMMYT.

    Google Scholar 

  • Razavi, M., & Hughes, G. R. (2004). Molecular variability of Mycosphaerella graminicola as detected by RAPD markers. Journal of Phytopathology, 152, 543–548.

    Article  CAS  Google Scholar 

  • Rohlf, F. J. (1998). NTSYS-pc. Numerical taxonomy and multivariate analysis system. Setauket, NY, USA: Exeter Software.

    Google Scholar 

  • Sartorato, A. (2004). Pathogenic variability and genetic diversity of Phaeoisariopsis griseola isolates from two counties in the state of Goias, Brazil. Journal of Phytopathology, 152, 385–390.

    Article  Google Scholar 

  • Schnieder, F., Koch, G., Jung, C., & Verreet, J. A. (2001). Genotypic diversity of the wheat leaf blotch pathogen Mycosphaerella graminicola (anamorph) Septoria tritici in Germany. European Journal of Plant Pathology, 107, 285–290.

    Article  CAS  Google Scholar 

  • Shaw, M. W., & Royle, D. J. (1989). Airborne inoculums as major source of Septoria tritici (Mycosphaerella graminicola) infections in winter wheat crops in the UK. Plant Pathology, 38, 35–43.

    Article  Google Scholar 

  • Simon, M. R., Cordo, C. A., Perello, A. E., & Struik, P. C. (2003). Influence of nitrogen supply on the susceptibility of wheat to Septoria tritici. Journal of Phytopathology, 151, 283–289.

    Google Scholar 

  • Simon, M. R., Perello, A. E., & Cordo, C. A. (1996). Influencia de infección tardía de Septoria tritici Rob. Ex Desm. Sobre el peso de mil granos y algunos parámetros de calidad en Triticum aestivum. Investigación Agraria, Producción y Protección Vegetales, 11, 162–171.

    Google Scholar 

  • Simon, M. R., Perello, A. E., Cordo, C. A., & Struik, P. C. (2002). Influence of Septoria tritici on yield, yield components and test weight of wheat under two nitrogen fertilization conditions. Crop Science, 42, 1974–1981.

    Article  Google Scholar 

  • Stoddart, J. A., & Taylor, J. F. (1988). Genotypic diversity: estimation and prediction in samples. Genetics, 118, 705–711.

    CAS  PubMed  Google Scholar 

  • Tautz, D., & Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukariotic genomes. Nucleic Acids Research, 23, 249–255.

    Google Scholar 

  • Wagara, I. N., Mwang’ombe, A. W., Kimenju, J. W., Buruchara, R. A., Jamnadass, R., & Majiwa, P. A. O. (2004). Genetic diversity of Phaeoisariopsis griseola in Kenya as revealed by AFLP and group-specific primers. Journal of Phytopathology, 152, 235–242.

    Article  CAS  Google Scholar 

  • Wolfe, A. D., & Liston, A. (1998). Contributions of PCR-based methods to plant systematics and evolutionary biology. In D. E. Soltis, P. S. Soltis, & J. J. Doyle (Eds.), Plant molecular systematics II (pp. 43–86). Dordrecht, the Netherlands: Kluwer.

    Google Scholar 

  • Wolfe, A. D., Xiang, Q.-Y., & Kephart, S. R. (1998). Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter simple sequence repeat markers. Molecular Ecology, 7, 1107–1125.

    Article  CAS  PubMed  Google Scholar 

  • Zhan, J., & McDonald, B. A. (2004). The interaction among evolutionary forces in the pathogenic fungus M. graminicola. Fungal Genetics and Biology, 41, 590–599.

    Article  CAS  PubMed  Google Scholar 

  • Zhan, J., Pettway, R. E., & McDonald, B. A. (2003). The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genetics and Biology, 38, 286–297.

    Article  CAS  PubMed  Google Scholar 

  • Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genome, 20, 176–183.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants provided by ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) (PICT 08-14489), Universidad Nacional de La Plata (A189) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

We thank Fabiana Consolo and Clara Albani (FIBA (Fundación para Investigaciones Biológicas Aplicadas)—Mar del Plata) for their generous cooperation during the molecular tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, N., Cordo, C. & Simón, M.R. Molecular variability among isolates of Mycosphaerella graminicola, the causal agent of septoria tritici blotch, in Argentina. Phytoparasitica 38, 379–389 (2010). https://doi.org/10.1007/s12600-010-0110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-010-0110-z

Keywords

Navigation