Skip to main content
Log in

In situ embedded bismuth nanoparticles among highly porous carbon fibers for efficient carbon dioxide reduction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Electrocatalysis provides an optimal approach for the conversion of carbon dioxide (CO2) into high-value chemicals, thereby presenting a promising avenue toward achieve carbon neutrality. However, addressing the selectivity and stability challenges of metal catalysts in electrolytic reduction remains a daunting task. In this study, the electrospinning method is employed to fabricate porous carbon nanofibers loaded with bismuth nanoparticles with the help of in situ pyrolysis. The porous carbon nanofibers as conductive support would facilitate the dispersion of bismuth active sites while inhibiting their aggregation and promoting the mass transfer, thus enhancing their electrocatalytic activity and stability. Additionally, nitrogen doping induces electron delocalization in bismuth atoms through metal-support interactions, thus enabling efficient adsorption of intermediates for improving selectivity based on the theoretical calculation. Consequently, Bi@PCNF-500 exhibits the exceptional selectivity and stability across a wide range of potential windows. Notably, its faradaic efficiency (FE) of formate reaches 92.7% in H-cell and 94.9% in flow cell, respectively, with good electrocatalytic stability. The in situ characterization and theoretical calculations elucidate the plausible reaction mechanism to obtain basic rules for designing efficient electrocatalyst.

Graphical abstract

摘要

电催化还原是将二氧化碳转化为高价值化学品的理想途径之一,为实现碳中和提供了富有前景的方式。然而,金属催化剂的选择性低和稳定性差是限制电催化转化性能的瓶颈。本研究采用静电纺丝方法与原位热解协同策略制备了负载铋(Bi)纳米颗粒的多孔碳纳米纤维。其中,多孔碳纳米纤维作为导电载体,可有效抑制铋纳米颗粒的聚集,促进活性位点的分散和传质过程,从而实现电催化活性和稳定性的增强。结合理论计算表明,氮掺杂碳载体-金属相互作用可诱导铋原子中的电子离域,从而增强中间体的高效吸附,提高电催化选择性。因此,该Bi@PCNF-500电催剂在宽电位窗口范围内表现出了优异的选择性和稳定性。在H池和流动池中,生成甲酸的法拉第效率可达到92.7和94.9%,且具有良好的电催化稳定性。结合原位表征和理论计算阐明的电催化机理为设计高效电催化剂提供了理论支撑。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ceballos BM, Yang JY. Directing the reactivity of metal hydrides for selective CO2 reduction. PNAS. 2018;115(50):12686. https://doi.org/10.1073/pnas.1811396115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ren S, Joulié D, Salvatore D, Torbensen K, Wang M, Robert M, Berlinguette CP. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science. 2019;365(6451):367. https://doi.org/10.1126/science.aax4608.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang X, Sun X, Guo S, Bond AM, Zhang J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential, Energy Environ. Sci. 2019;12(4):1334. https://doi.org/10.1039/c9ee00018f.

    Article  CAS  Google Scholar 

  4. Wang X, Wang Z, García de Arquer FP, Dinh CT, Ozden A, Li YC, Nam D, Li J, Liu YS, Wicks J, Chen Z, Chi M, Chen B, Wang Y, Tam J, Howe JY, Proppe A, Todorović P, Li F, Zhuang TT, Gabardo CM, Kirmani AR, McCallum C, Hung S, Lum Y, Luo M, Min Y, Xu A, Obrien CP, Stephen B, Sun B, Ip AH, Richter LJ, Kelley SO, Sinton D, Sargent EH. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat Energy. 2020;5(6):478. https://doi.org/10.1038/s41560-020-0607-8.

    Article  CAS  Google Scholar 

  5. Wagner A, Sahm CD, Reisner E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat Catal. 2020;3(10):775. https://doi.org/10.1038/s41929-020-00512-x.

    Article  CAS  Google Scholar 

  6. Chen G, Wei F, Zhou Z, Su B, Yang C, Lu XF, Wang S, Wang X. Phase junction crystalline carbon nitride nanosheets modified with CdS nanoparticles for photocatalytic CO2 reduction. Sustain Energ Fuels. 2023;7(2):381. https://doi.org/10.1039/D2SE01576E.

    Article  CAS  Google Scholar 

  7. Wang X, Xu A, Li F, Hung SF, Nam DH, Gabardo CM, Wang Z, Xu Y, Ozden A, Rasouli AS, Ip AH, Sinton D, Sargent EH. Efficient methane electrosynthesis enabled by tuning local CO2 availability. J Am Chem Soc. 2020;142(7):3525. https://doi.org/10.1021/jacs.9b12445.

    Article  CAS  PubMed  Google Scholar 

  8. Ma W, Xie S, Liu T, Fan Q, Ye J, Sun F, Jiang Z, Zhang Q, Cheng J, Wang Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat Catal. 2020;3(6):478. https://doi.org/10.1038/s41929-020-0450-0.

    Article  CAS  Google Scholar 

  9. Zang D, Gao XJ, Li L, Wei Y, Wang H. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022;15(10):8872. https://doi.org/10.1007/s12274-022-4698-3.

    Article  CAS  Google Scholar 

  10. Zhao Y, Pei Z, Lu XF, Luan D, Wang X, Lou XW. Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn-CO2 batteries. Chem Catalysis. 2022;2(6):1480. https://doi.org/10.1016/j.checat.2022.05.015.

    Article  CAS  Google Scholar 

  11. Xu Q, Jiang J, Wang X, Duan L, Guo H. Understanding oxygen vacant hollow structure CeO2@In2O3 heterojunction to promote CO2 reduction. Rare Met. 2023;42(6):1888. https://doi.org/10.1007/s12598-022-02244-2.

    Article  CAS  Google Scholar 

  12. Feng X, Zou H, Zheng R, Wei W, Wang R, Zou W, Lim G, Hong J, Duan L, Chen H. Bi2O3/BiO2 nanoheterojunction for highly efficient electrocatalytic CO2 reduction to formate. Nano Lett. 2022;22(4):1656. https://doi.org/10.1021/acs.nanolett.1c04683.

    Article  CAS  PubMed  Google Scholar 

  13. Yang X, Deng P, Liu D, Zhao S, Li D, Wu H, Ma Y, Xia BY, Li M, Xiao C, Ding S. Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction. J Mater Chem A. 2020;8(5):2472. https://doi.org/10.1039/C9TA11363K.

    Article  CAS  Google Scholar 

  14. Li Y, Chen J, Chen S, Liao X, Zhao T, Cheng F, Wang H. In situ confined growth of bismuth nanoribbons with active and robust edge sites for boosted CO2 electroreduction. ACS Energy Lett. 2022;7(4):1454. https://doi.org/10.1021/acsenergylett.2c00326.

    Article  CAS  Google Scholar 

  15. Li L, Zhang Z. Sn–Bi bimetallic interface induced by nano-crumples for CO2 electroreduction to formate. Rare Met. 2022;41(12):3943. https://doi.org/10.1007/s12598-022-02139-2.

    Article  CAS  Google Scholar 

  16. Zhang C, Hao X, Wang J, Ding X, Zhong Y, Jiang Y, Wu MC, Long R, Gong W, Liang C, Cai W, Low J, Xiong Y. Concentrated Formic Acid from CO2 Electrolysis for Directly Driving Fuel Cell. Angew Chem Int Ed. 2024;63:e202317628.

    Article  CAS  Google Scholar 

  17. Fang W, Guo W, Lu R, Yan Y, Liu X, Wu D, Li FM, Zhou Y, He C, Xia C, Niu H, Wang S, Liu Y, Mao Y, Zhang C, You B, Pang Y, Duan L, Yang X, Song F, Zhai T, Wang G, Guo X, Tan B, Yao T, Wang Z, Xia BY. Durable CO2 conversion in the proton-exchange membrane system. Nature. 2024;626(7997):86. https://doi.org/10.1038/s41586-023-06917-5.

    Article  CAS  PubMed  Google Scholar 

  18. Yang F, Elnabawy AO, Schimmenti R, Song P, Wang J, Peng Z, Yao S, Deng R, Song S, Lin Y, Mavrikakis M, Xu W. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat Commun. 2020;11(1):1088. https://doi.org/10.1038/s41467-020-14914-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ren X, Liu F, Wu H, Lu Q, Zhao J, Liu Y, Zhang J, Mao J, Wang J, Han X, Deng Y, Hu W. Reconstructed bismuth oxide through in situ carbonation by carbonate-containing electrolyte for highly active electrocatalytic CO2 reduction to formate. Angew Chem Int Ed. 2024;63(9):e202316640. https://doi.org/10.1002/anie.202316640.

    Article  CAS  Google Scholar 

  20. Liu Y, Qiu W, Wang P, Li R, Liu K, Omer KM, Jin Z, Li P. Pyridine-N-rich Cu single-atom catalyst boosts nitrate electroreduction to ammonia. Appl Catal B-Environ. 2024;340:123228. https://doi.org/10.1016/j.apcatb.2023.123228.

    Article  CAS  Google Scholar 

  21. Shu X, Chen Q, Yang M, Liu M, Ma J, Zhang J. Tuning co-catalytic sites in hierarchical porous N-doped carbon for high-performance rechargeable and flexible Zn-air battery. Adv Energy Mater. 2022;13(1):2202871. https://doi.org/10.1002/aenm.202202871.

    Article  CAS  Google Scholar 

  22. Zhang M, Lu M, Yang M, Liao J, Liu Y, Yan H, Chang J, Li S, Lan Y. Ultrafine Cu nanoclusters confined within covalent organic frameworks for efficient electroreduction of by synergistic strategy,. eScience. 2023;3(3):100116. https://doi.org/10.1016/j.esci.2023.100116.

    Article  Google Scholar 

  23. Ayon SA, Hasan S, Billah MM, Nishat SS, Kabir A. Improved luminescence and photocatalytic properties of Sm3+-doped ZnO nanoparticles via modified sol-gel route: a unified experimental and DFT+U approach. J Rare Earth. 2023;41(4):550. https://doi.org/10.1016/j.jre.2022.03.004.

    Article  CAS  Google Scholar 

  24. Liu W, Yuan M, Lian J, Li G, Li QP, Qiao F, Zhao Y. Embedding partial sulfurization of iron-cobalt oxide nanoparticles into carbon nanofibers as an efficient electrode for the advanced asymmetric supercapacitor. Tungsten. 2022;5(1):118. https://doi.org/10.1007/s42864-022-00157-2.

    Article  Google Scholar 

  25. Liu S, Lu XF, Xiao J, Wang X, Lou XW. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew Chem Int Ed. 2019;58(39):13828. https://doi.org/10.1002/anie.201907674.

    Article  CAS  Google Scholar 

  26. Tang M, Ding H, Zhang Y, Long Y, Liu J, Jin M, Yi H, Luo L, Lu S, Zhang J. Pt nanoparticles supported on N-doped carbon/mesoporous TiN particle composites as catalysts for the methanol oxidation reaction. ACS Appl Nano Mater. 2024;7(2):1606. https://doi.org/10.1021/acsanm.3c04566.

    Article  CAS  Google Scholar 

  27. Liu Q, Liu X, Xie Y, Sun F, Liang Z, Wang L, Fu H. N-Doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn–Air battery. J Mater Chem A. 2020;8(40):21189. https://doi.org/10.1039/d0ta08114k.

    Article  CAS  Google Scholar 

  28. Chizari K, Janowska I, Houllé M, Florea I, Ersen O, Romero T, Bernhardt P, Ledoux MJ, PhamHuu C. Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Appl Catal A-Gen. 2010;380(1–2):72. https://doi.org/10.1016/j.apcata.2010.03.031.

    Article  CAS  Google Scholar 

  29. Chen Z, Yang W, Wu Y, Zhang C, Luo J, Chen C, Li Y. Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature. Nano Res. 2020;13(11):3075. https://doi.org/10.1007/s12274-020-2975-6.

    Article  CAS  Google Scholar 

  30. Luo M, Liang Z, Liu C, Qi X, Chen M, Rehman Sagar RU, Yang H, Liang T. Single-atom manganese and nitrogen co-doped graphene as lowcost catalysts for the efficient CO oxidation at room temperature. Appl Surf Sci. 2021;536:147809. https://doi.org/10.1016/j.apsusc.2020.147809.

    Article  CAS  Google Scholar 

  31. Li L, Jiang H, Xu N, Lian X, Huang H, Geng H, Peng S. Stable bismuth phosphosulfide nanoparticle encapsulation into hollow multi-channel carbon nanofibers toward high performance sodium storage. J Mater Chem A. 2021;9(32):17336. https://doi.org/10.1039/D1TA05432E.

    Article  CAS  Google Scholar 

  32. Li Z, Zhang JT, Chen YM, Li J, Lou XW. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat Commun. 2015;6(1):8850. https://doi.org/10.1038/ncomms9850.

    Article  CAS  PubMed  Google Scholar 

  33. Wang C, Kim J, Tang J, Kim M, Lim H, Malgras V, You J, Xu Q, Li J, Yamauchi Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem. 2020;6(1):19. https://doi.org/10.1016/j.chempr.2019.09.005.

    Article  CAS  Google Scholar 

  34. Zhang W, Zhang X, Chen L, Dai J, Ding Y, Ji L, Zhao J, Yan M, Yang F, Chang C, Guo S. Single-walled carbon nanotube induced optimized electron polarization of rhodium nanocrystals to develop an interface catalyst for highly efficient electrocatalysis. ACS Catal. 2018;8(9):8092. https://doi.org/10.1021/acscatal.8b02016.

    Article  CAS  Google Scholar 

  35. Liu F, Liu S, Meng J, Xia F, Xiao Z, Liu Z, Li Q, Wu J, Mai L. Stabilizing conversion reaction electrodes by MOF derived N-doped carbon shell for highly reversible lithium storage. Nano Energy. 2020;73:104758. https://doi.org/10.1016/j.nanoen.2020.104758.

    Article  CAS  Google Scholar 

  36. Cheng X, Ran F, Huang Y, Zheng R, Yu H, Shu J, Xie Y, He YB. Insight into the synergistic effect of N, S Co-doping for carbon coating layer on niobium oxide anodes with ultra-long life. Adv Funct Mater. 2021;31(19):2100311. https://doi.org/10.1002/adfm.202100311.

    Article  CAS  Google Scholar 

  37. Yao P, Li T, Qiu Y, Zheng Q, Zhang H, Yan J, Li X. N-doped hierarchical porous carbon derived from bismuth salts decorated ZIF-8 as a highly efficient electrocatalyst for CO2 reduction. J Mater Chem A. 2021;9(1):320. https://doi.org/10.1039/d0ta09293b.

    Article  CAS  Google Scholar 

  38. Liu Z, Zhang J, Yu L, Wang H, Huang X. Thermal derived bismuth nanoparticles on nitrogen-doped carbon aerogel enable selective electrochemical production of formate from CO2. J CO2 Util. 2022;61:102031. https://doi.org/10.1016/j.jcou.2022.102031.

    Article  CAS  Google Scholar 

  39. Chen Q, Chen S, Ma J, Ding S, Zhang J. Separation effect of graphene sheets with N, O codoping and molybdenum clusters for reversible lithium-iodine batteries. Adv Funct Mater. 2023;34(2):2308272. https://doi.org/10.1002/adfm.202308272.

    Article  CAS  Google Scholar 

  40. Li H, Liu M, Zhao C, Le Z, Wei W, Nie P, Hou M, Xu T, Gao S, Wang L, Chang L. Highly dispersed antimony-bismuth alloy encapsulated in carbon nanofibers for ultrastable K-Ion batteries. J Phys Chem Lett. 2022;13(28):6587. https://doi.org/10.1021/acs.jpclett.2c01032.

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Zhu Y, Ye H, Chen J, Zhang L, Wei H, Liu Z, Qian Y. Controlled tin oxide nanoparticles encapsulated in N-Doped carbon nanofibers for superior lithium-ion storage. ACS Appl Energy Mater. 2022;5(2):1840. https://doi.org/10.1021/acsaem.1c03268.

    Article  CAS  Google Scholar 

  42. Cao X, Tian Y, Ma J, Guo W, Cai W, Zhang J. Strong p-d Orbital hybridization on bismuth nanosheets for high performing CO2 electroreduction. Adv Mater. 2024;36(6):2309648.

    Article  CAS  Google Scholar 

  43. Deng P, Wang H, Qi R, Zhu J, Chen S, Yang F, Zhou L, Qi K, Liu H, Xia BY. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2019;10(1):743. https://doi.org/10.1021/acscatal.9b04043.

    Article  CAS  Google Scholar 

  44. Xu Y, Guo Y, Sheng Y, Yu H, Deng K, Wang Z, Li X, Wang H, Wang L. Selective CO2 electroreduction to formate on polypyrrole-modified oxygen vacancy-rich Bi2O3 nanosheet precatalysts by local microenvironment modulation. Small. 2023;19(29):2300001. https://doi.org/10.1002/smll.202300001.

    Article  CAS  Google Scholar 

  45. Gan R, Song Y, Ma C, Shi J. In situ growth of N-doped carbon nanotubes in Fe-Nx/Fe2O3/Fe3O4-encapsulated carbon sheets for efficient bifunctional oxygen catalysis. Appl Catal B-Environ. 2023;327:122443. https://doi.org/10.1016/j.apcatb.2023.122443.

    Article  CAS  Google Scholar 

  46. Shi M, Lu K, Hong X, Qiang H, Liu C, Ding Z, Wang F, Xia M. High-yield green synthesis of N-doped hierarchical porous carbon by nitrate-mediated organic salt activation strategy for capacitive deionization: universality and commerciality. Chem. Eng. J. 2023;471:144465. https://doi.org/10.1016/j.cej.2023.144465.

    Article  CAS  Google Scholar 

  47. Jiang H, Luo R, Li Y, Chen W. Recent advances in solid-liquid-gas three-phase interfaces in electrocatalysis for energy conversion and storage. EcoMat. 2022;4(4):12199. https://doi.org/10.1002/eom2.12199.

    Article  CAS  Google Scholar 

  48. Iglesias van Montfort H, Subramanian S, Irtem E, Sassenburg M, Li M, Kok J, Middelkoop J, Burdyny T. An advanced guide to assembly and operation of CO2 electrolyzers. ACS Energ. Lett. 2023;8:4156.

    Article  CAS  Google Scholar 

  49. Gorthy S, Verma S, Sinha N, Shetty S, Nguyen H, Neurock M. Theoretical insights into the effects of KOH concentration and the role of OH in the electrocatalytic reduction of CO2 on Au. ACS Catal. 2023;13(19):12924. https://doi.org/10.1021/acscatal.2c06115.

    Article  CAS  Google Scholar 

  50. Duan Y, Liu K, Zhang Q, Yan J, Jiang Q. Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods. 2020;4(5):1900846. https://doi.org/10.1002/smtd.201900846.

    Article  CAS  Google Scholar 

  51. Huang X, Lin J, Liang J, Kou E, Cai W, Zheng Y, Zhang H, Zhang X, Liu Y, Li W, Lei B. Pyridinic nitrogen doped carbon dots supply electrons to improve photosynthesis and extracellular electron transfer of chlorella pyrenoidosa. Small. 2023;19(31):2206222. https://doi.org/10.1002/smll.202206222.

    Article  CAS  Google Scholar 

  52. Ning X, Li Y, Dong B, Wang H, Yu H, Peng F, Yang Y. Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: effects of synthesis method on metal-support interaction. J Catal. 2017;348:100. https://doi.org/10.1016/j.jcat.2017.02.011.

    Article  CAS  Google Scholar 

  53. Cao X, Wulan B, Zhang B, Tan D, Zhang J. Defect evolution of hierarchical SnO2 aggregates for boosting CO2 electrocatalytic reduction. J Mater Chem A. 2021;9(26):14741.

    Article  CAS  Google Scholar 

  54. Firet NJ, Smith WA. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2016;7(1):606. https://doi.org/10.1021/acscatal.6b02382.

    Article  CAS  Google Scholar 

  55. Jia B, Chen Z, Li C, Li Z, Zhou X, Wang T, Yang W, Sun L, Zhang B. Indium cyanamide for industrial-grade CO2 electroreduction to formic acid. J Am Chem Soc. 2023;145(25):14101. https://doi.org/10.1021/jacs.3c04288.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22175108 and 22379086), the Natural Science Foundation of Shandong Province (Nos.ZR2020JQ09 and ZR2022ZD27) and Taishan Scholars Program of Shandong Province (tstp20221105). The authors also acknowledge the assistance of the Analytical Center for Structural Constituent and Physical Property of Core Facilities Sharing Platform, Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Tao Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1602 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, WJ., Zhou, A., Cai, WW. et al. In situ embedded bismuth nanoparticles among highly porous carbon fibers for efficient carbon dioxide reduction. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02803-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02803-9

Keywords

Navigation