Skip to main content
Log in

Lath-like phases formed at an extremely high temperature in a Mg–RE (RE = rare earth)–Al alloy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Thermal stable intermetallic particles are important for the heat resistance of magnesium (Mg) alloys. In this work, many lath-like particles formed in α-Mg grains of a Mg–8Gd–3Sm–0.7Al casting alloy when heat-treated at 873 K. Atomic-resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) characterizations indicate that most of them are Mg-containing Al2(Gd,Sm), with the atomic ratio of Mg:Al:(Gd,Sm) being ~ 1:1:1; a small part of them with relatively wider thickness are long-period stacking ordered (LPSO) phases simultaneously containing both 14H and 18R structures. Both followed common orientation relationships with Mg matrix as those reported in previous work. In addition, many Mg laths were observed in the primary blocky Al2(Gd,Sm) phase at grain boundaries, where the atomic ratio of Al:(Gd,Sm) in the Al2(Gd,Sm) matrix was 2:1. Finally, density functional theory (DFT) calculations illustrated the detail structure of the re-constructed Mg/Al2RE interface and simultaneously deduced the underlying reason for the re-dissolution of the newly formed Mg-containing Al2(Gd,Sm) plates in α-Mg matrix.

Graphical abstract

摘要

热学稳定金属间颗粒对于耐热镁合金至关重要。本研究发现,在873 K下进行热处理,在Mg-8Gd-3Sm-0.7Al铸造合金的α-Mg晶粒内会生成大量板条状颗粒。原子级高角环形暗场扫描透射电镜表征表明大部分板条状相都是含Mg的Al2(Gd,Sm)相,其Mg:Al:(Gd,Sm)原子比约为1:1:1;另有一小部分厚度较宽的板条状相是长周期有序堆垛相,同时包含14H和18R两种结构。这两种板条状相都与基体保持确定的位向关系,此前已有文献报道。此外,在晶界上还有很多初生Al2(Gd,Sm) 颗粒,其Al:(Gd,Sm)原子比约为2:1。最后,相应的密度泛函理论计算结果揭示了重构的Mg/Al2RE界面的精细结构,同时推导出了在α-Mg基体中新生成的Al2(Gd,Sm)片状结构会再次溶解的根本原因。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang Q, Lv SH, Deng B, Hort N, Huang Y, Sun W, Qiu X. Degraded creep resistance induced by static precipitation strengthening in high-pressure die casting Mg–Al–Sm alloy. J Mater Sci Technol. 2024;178:48. https://doi.org/10.1016/j.jmst.2023.08.035.

    Article  Google Scholar 

  2. Yang Y, Xiong XM, Chen J, Peng XD, Chen DL, Pan FS. Research advances of magnesium and magnesium alloys worldwide in 2022. J Magnes Alloys. 2023;11:2611. https://doi.org/10.1016/j.jma.2023.07.011.

    Article  CAS  Google Scholar 

  3. Li ZH, Cheng D, Wang K, Hoglund ER, Howe JM, Zhou BC, Sasaki TT, Ohkubo T, Hono K. Revisited precipitation process in dilute Mg–Ca–Zn alloys. Acta Mater. 2023;257:119072. https://doi.org/10.1016/j.actamat.2023.119072.

    Article  CAS  Google Scholar 

  4. Lv SH, Yang Q, Meng FZ, Meng J. Characterizations on the instantaneously formed Ni-containing intermetallics in magnesium alloys. J Magnes Alloys. 2023;11:2991. https://doi.org/10.1016/j.jma.2021.11.032.

    Article  CAS  Google Scholar 

  5. Qin PF, Yang Q, He YY, Zhang JH, Xie JH, Hua XR, Guan K, Meng J. Microstructure and mechanical properties of high-strength high-pressure die-cast Mg–4Al–3La–1Ca–0.3Mn alloy. Rare Met. 2021;40:2956. https://doi.org/10.1007/s12598-020-01661-5.

    Article  CAS  Google Scholar 

  6. Yang Q, Lv SH, Guan K, Xie ZF, Qiu X. Extra-conventional strengthening mechanisms in non-recrystallized grains of an extruded Mg–Gd–Zr alloy. J Magnes Alloys. 2023. https://doi.org/10.1016/j.jma.2023.09.024.

    Article  Google Scholar 

  7. Li JY, Wang FL, Zeng J, Zhao CY, Qian C, Wang FH, Dong S, Jin L, Dong J. Decreasing the mechanical anisotropy of the forged Mg–8.5Gd–2.5Y–1.5Zn–0.5Zr alloy by modulating blocky LPSO particles using multi-directional forging. J Magnes Alloys. 2023. https://doi.org/10.1016/j.jma.2022.10.024.

    Article  Google Scholar 

  8. Bu DH, Li T, Han XL, Du ZW, Yuan JW, Zhang K, Li YJ, Peng YG, Pang Z, Zhao CL. Enhancing strength and ductility in back extruded WE71 magnesium alloy cylindrical parts by introduction of multi-direction forging process. J Rare Earths. 2023;41:462. https://doi.org/10.1016/j.jre.2022.03.001.

    Article  CAS  Google Scholar 

  9. Zhang Z, Chen HH, Cao SJ, Peng JH, Guo P, Long C, Wang S, Chen C, Wu Y, Huang JA, Du XD, Wei HG. Effect of cerium alloying on microstructure, texture and mechanical properties of magnesium during cold-rolling process. J Rare Earths. 2023. https://doi.org/10.1016/j.jre.2023.05.012.

    Article  Google Scholar 

  10. Ding SJ, Xu LD, Cai XC, Gu SXY, Wen KK, Yu H, Chen Z, Sun BR, Xin SW, Shen TD. Exceptional thermal stability of ultrafine-grained long-period stacking ordered Mg alloy. Rare Met. 2022;41(5):1537. https://doi.org/10.1007/s12598-021-01889-9.

    Article  CAS  Google Scholar 

  11. Liu H, Ju J, Yang XW, Li YH, Jiang JH, Ma AB. Microstructure and mechanical property of Mg–10Gd–2Y–1.5Zn–0.5Zr alloy processed by eight-pass equal-channel angular pressing. Rare Met. 2023;42(1):137. https://doi.org/10.1007/s12598-018-1022-1.

  12. Meng FZ, Lv SH, Yang Q, Qiu X, Yan ZX, Duan Q, Meng J. Multiplex intermetallic phases in a gravity die-cast Mg−6.0Zn−1.5Nd−0.5Zr (wt%) alloy. J Magnes Alloys. 2022;10:209. https://doi.org/10.1016/j.jma.2020.10.005.

    Article  CAS  Google Scholar 

  13. Lv SH, Lü XL, Meng FZ, Yang Q, Qiu X, Qin PF, Duan Q, Meng J. Microstructures and mechanical properties in a Gd-modified high-pressure die casting Mg–4Al–3La−0.3Mn alloy. Mater Sci Eng A. 2020;773:138725. https://doi.org/10.1016/j.msea.2019.138725.

    Article  CAS  Google Scholar 

  14. Yan ZX, Yang Q, Ma R, Lv SH, Wu XH, Liu XJ, Zhang JH, Yao CG, Meng FZ, Qiu X. Effects of Sm addition on microstructure evolutions and mechanical properties of high-strength Mg–Gd−Sm–Zr extruded alloys. Mater Sci Eng A. 2022;831:142264. https://doi.org/10.1016/j.msea.2021.142264.

    Article  CAS  Google Scholar 

  15. Yokobayashi H, Kishida K, Inui H, Yamasaki M, Kawamura Y. Enrichment of Gd and Al atoms in the quadruple close packed planes and their in-plane long-range ordering in the long period stacking-ordered phase in the Mg–Al–Gd system. Acta Mater. 2011;59:7287. https://doi.org/10.1016/j.actamat.2011.08.011.

    Article  CAS  Google Scholar 

  16. Kishida K, Inoue A, Yokobayashi H, Inui H. Deformation twinning in a Mg–Al–Gd ternary alloy containing precipitates with a long-period stacking-ordered (LPSO) structure. Scr Mater. 2014;89:25. https://doi.org/10.1016/j.scriptamat.2014.06.019.

    Article  CAS  Google Scholar 

  17. Dai JC, Easton M, Zhu SM, Wu GH, Ding WJ. Grain refinement of Mg–10Gd alloy by Al additions. J Mater Res. 2012;27:2790. https://doi.org/10.1557/jmr.2012.313.

    Article  CAS  Google Scholar 

  18. Gu XF. Near atomic row matching in the interface analyzed in both direct and reciprocal space. Crystals. 2020;10:192. https://doi.org/10.3390/cryst10030192.

    Article  CAS  Google Scholar 

  19. Gu XF, Furuhara T. Characterization of crystal structure and precipitation crystallography of a new MgxAl2xGd phase in an Mg97Al1Gd2 alloy. J Appl Crystallogr. 2016;49:1177. https://doi.org/10.1107/S1600576716008980.

    Article  CAS  Google Scholar 

  20. Zhuang YP, Zhou PW, Wang HX, Nie KB, Liu Y, Liang W, Wang LF, Zheng LW. The formation mechanism of the lamellar phase precipitated during solid solution treatment in the Mg–Gd–Al alloy. J Mater Res Technol. 2020;9:11392. https://doi.org/10.1016/j.jmrt.2020.08.024.

    Article  CAS  Google Scholar 

  21. Li BS, Guan K, Yang Q, Niu XD, Zhang DP, Yu ZJ, Zhang XH, Tang ZM, Meng J. Effects of 0.5 wt% Ce addition on microstructures and mechanical properties of a wrought Mg−8Gd−1.2Zn−0.5Zr alloy. J Alloys Compd. 2018;763:120. https://doi.org/10.1016/j.jallcom.2018.05.308.

    Article  CAS  Google Scholar 

  22. Singh A, Hiroto T, Ode M, Takakura H, Tesař K, Somekawa H, Hara T. Precipitation of stable icosahedral quasicrystal phase in a Mg–Zn–Al alloy. Acta Mater. 2022;225:117563. https://doi.org/10.1016/j.actamat.2021.117563.

    Article  CAS  Google Scholar 

  23. Kishida K, Yokobayashi H, Inui H, Yamasaki M, Kawamura Y. The crystal structure of the LPSO phase of the 14H-type in the Mg–Al–Gd alloy system. Intermetallics. 2012;31:55. https://doi.org/10.1016/j.intermet.2012.06.010.

    Article  CAS  Google Scholar 

  24. Zhu YM, Morton AJ, Nie JF. The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys. Acta Mater. 2010;58:2936. https://doi.org/10.1016/j.actamat.2010.01.022.

    Article  CAS  Google Scholar 

  25. Gröbner J, Kozlov A, Fang XY, Geng J, Nie JF, Schmid-Fetzer R. Phase equilibria and transformations in ternary Mg-rich Mg–Y–Zn alloys. Acta Mater. 2012;60:5948. https://doi.org/10.1016/j.actamat.2012.05.035.

    Article  CAS  Google Scholar 

  26. Zhao X, Yang Z, Chang JC, Liang MX, Wang LY. Formation and transformation of metastable LPSO building blocks clusters in Mg–Gd–Y–Zn–Zr alloys by spinodal decomposition and heterogeneous nucleation. J Magnes Alloys. 2023. https://doi.org/10.1016/j.jma.2023.04.011.

    Article  Google Scholar 

  27. Zhang H, Liu CQ, Zhu YM, Chen HW, Bourgeois L, Nie JF. Revisiting building block ordering of long-period stacking ordered structures in Mg–Y–Al alloys. Acta Mater. 2018;152:96. https://doi.org/10.1016/j.actamat.2018.04.010.

    Article  CAS  Google Scholar 

  28. Liu ZH, Wang L, Wang LP, Feng YC, Kang FW, Wang B, Li SZ, Hu CS. Effect of Al addition on the g rain refinement and mechanical properties of as-cast Mg–5Y–4Sm alloys. J Mater Sci. 2022;57:15137. https://doi.org/10.1007/s10853-022-07569-y.

    Article  CAS  Google Scholar 

  29. Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:169. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:386. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  Google Scholar 

  31. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  32. Kresse G, Joubert J. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  CAS  Google Scholar 

  33. Deng DY, Cheng RJ, Jiang B, Yang MB, Wang HJ, Zhou YF, Yu CT, Ma YL, Peng J, Pan FS. The main strengthening phases transformation and their strengthening mechanisms in as-cast Mg–Gd–(Y)–Zn alloys: a review. J Alloys Compd. 2023;968: 171782. https://doi.org/10.1016/j.jallcom.2023.171782.

    Article  CAS  Google Scholar 

  34. Nie JF, Oh-ishi K, Gao X, Hono K. Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy. Acta Mater. 2008;56:6061. https://doi.org/10.1016/j.actamat.2008.08.025.

    Article  CAS  Google Scholar 

  35. Zhu YM, Morton AJ, Nie JF. Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 2012;60:6562. https://doi.org/10.1016/j.actamat.2012.08.022.

    Article  CAS  Google Scholar 

  36. Egusa D, Abe E. The structure of long period stacking/order Mg–Zn–RE phases with extended non-stoichiometry ranges. Acta Mater. 2012;60:166. https://doi.org/10.1016/j.actamat.2011.09.030.

    Article  CAS  Google Scholar 

  37. Kishida K, Nagai K, Matsumoto A, Yasuhara A, Inui H. Crystal structures of highly-ordered long-period stacking-ordered phases with 18R, 14H and 10H-type stacking sequences in the Mg–Zn–Y system. Acta Mater. 2015;99:228. https://doi.org/10.1016/j.actamat.2015.08.004.

    Article  CAS  Google Scholar 

  38. Gröbner J, Kozlov A, Fang XY, Zhu S, Nie JF, Gibson MA, Schmid-Fetzer R. Phase equilibria and transformations in ternary Mg–Gd–Zn alloys. Acta Mater. 2015;90:400. https://doi.org/10.1016/j.actamat.2015.02.044.

    Article  CAS  Google Scholar 

  39. Yang Q, Lv SH, Qin PF, Meng FZ, Qiu X, Hua XR, Guan K, Sun W, Liu XJ, Meng J. Interphase boundary segregation induced phase transformation in a high-pressure die casting Mg–Al–La–Ca–Mn alloy. Mater Des. 2020;190:108566. https://doi.org/10.1016/j.matdes.2020.108566.

    Article  CAS  Google Scholar 

  40. Sun WB, Li CM, Ga YH, Che ZY, Han XZ. Research on the precipitation strengthening of particle with a new shape model in magnesium alloys. Mater Sci Eng A. 2015;642:309. https://doi.org/10.1016/j.msea.2015.07.013.

    Article  CAS  Google Scholar 

  41. Nie JF. Precipitation and hardening in magnesium alloys. Metall Mater Trans A. 2012;43:3891. https://doi.org/10.1007/s11661-012-1217-2.

    Article  CAS  Google Scholar 

  42. Shao XH, Peng ZZ, Jin QQ, Ma XL. Atomic-scale segregations at the deformation-induced symmetrical boundary in an Mg–Zn–Y alloy. Acta Mater. 2016;118:177. https://doi.org/10.1016/j.actamat.2016.07.054.

    Article  CAS  Google Scholar 

  43. Lv SH, Li YW, Meng FZ, Duan Q, Yang Q, Liu XJ, Meng J. Thermodynamic stability of Al11RE3 intermetallic compounds from first-principles calculations. Comput Mater Sci. 2017;131:28. https://doi.org/10.1016/j.commatsci.2017.01.037.

    Article  CAS  Google Scholar 

  44. Yang Q, Bu FQ, Qiu X, Li YD, Li WR, Sun W, Liu XJ, Meng J. Strengthening effect of nano-scale precipitates in a die-cast Mg−4Al−5.6Sm−0.3Mn alloy. J Alloys Compd. 2016;665:240. https://doi.org/10.1016/j.jallcom.2016.01.048.

    Article  CAS  Google Scholar 

  45. Yang Q, Liu XJ, Bu FQ, Meng FZ, Zheng T, Zhang DP, Meng J. First-principles phase stability and elastic properties of Al−La binary system intermetallic compounds. Intermetallics. 2015;60:92. https://doi.org/10.1016/j.intermet.2015.02.007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific and Technological Developing Scheme of Jilin Province (Nos. YDZJ202301ZYTS538 and 20220101239JC), the Chinese Academy of Sciences Youth Innovation Promotion Association (No. 2023234), the National Natural Science Foundation of China (No. U21A20323), the Scientific and Technological Developing Scheme of Jilin Province (No. SKL202302038) and the Major Scientific and Technological Projects of Hebei Province (No. 23291001Z), and the Scientific and Technology Project of Hanjiang District.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Hui Lv or Qiang Yang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Lv, SH., Yang, Q. et al. Lath-like phases formed at an extremely high temperature in a Mg–RE (RE = rare earth)–Al alloy. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02785-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02785-8

Keywords

Navigation