Skip to main content
Log in

Highly anti-corrosive NiFe LDHs–NiFe alloy hybrid enables long-term stable alkaline seawater electrolysis

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Owing to the significant potential of alkaline seawater electrolysis for converting surplus power into eco-friendly hydrogen fuel, we developed bifunctional electrodes that integrate low-crystalline NiFe LDHs and amorphous NiFe alloy on a Ni foam (NF) substrate to enhance this process. Driven by the battery-like characteristics of NiFe LDHs, an anti-corrosive and active outer layer of NiFevacOOH continuously forms over time in the hybrid on the anode for the oxygen evolution reaction (OER), effectively mitigating powder shedding caused by corrosion induced by multiple anions in seawater. Meanwhile, the strong bond between the hybrid and the NF substrate maintains intact hybrid coatings to ensure a relatively high overall conductivity of the electrodes, significantly reducing the negative effects of structural degradation during the OER and hydrogen evolution reaction (HER), as well as the accumulation of contaminants on the electrode surfaces. In long-term tests, these bifunctional hybrid electrodes maintained stable performance, even at a high current density of 500 mA·cm−2. The cell voltage increased by only 88 mV over 1000 h to 1.970 V during saline electrolysis and by 103 mV over 500 h to 2.062 V during seawater electrolysis. Hence, this study provides valuable insights into efficient and stable seawater electrolysis using NiFe LDHs–NiFe alloy hybrids.

Graphical abstract

摘要

鉴于碱性海水电解具有将剩余电能转化为环保氢燃料的巨大潜力,我们开发了一种具有高效催化海水电解的双功能电极。该电极采用Ni泡沫(NF)衬底,并集成了低结晶态NiFe LDHs和非晶态NiFe合金复合催化剂。在阳极析氧(OER)过程中,由于NiFe LDHs典型的电池材料特性,使得阳极表面随着时间的延长不断形成既耐腐蚀又具有高催化活性的NiFevacOOH外层,从而有效减轻了海水中多种阴离子腐蚀引起的粉末脱落。同时,复合催化剂与NF衬底之间的牢固结合确保了涂层的完整性和高的电极导电性,显著降低了结构退化以及污染物累积对电极OER和析氢反应(HER)性能带来的负面影响。长时测试结果显示,在高达500 mA·cm−2的高电流密度下,这些双功能电极仍能保持高的稳定催化性能。盐水电解时,1000 h内电解槽电压仅增加88 mV至1.970 V;海水电解时,则在500 h内仅增加103 mV至2.062 V。该研究表明NiFe LDHs–NiFe合金具有高效稳定催化海水电解的应用潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zastempowski M. Analysis and modeling of innovation factors to replace fossil fuels with renewable energy sources-evidence from European Union enterprises. Renew Sust Energ Rev. 2023;178:113262. https://doi.org/10.1016/j.rser.2023.113262.

    Article  Google Scholar 

  2. Montoya FG, Aguilera MJ, Manzano-Agugliaro F. Renewable energy production in Spain: a review. Renew Sust Energ Rev. 2014;33:509. https://doi.org/10.1016/j.rser.2014.01.091.

    Article  Google Scholar 

  3. Sun YS, Zhao ZX, Yang M, Jia DQ, Pei W, Xu B. Overview of energy storage in renewable energy power fluctuation mitigation. CSEE J Power Energy Syst. 2020;6(1):160. https://doi.org/10.17775/CSEEJPES.2019.01950.

    Article  Google Scholar 

  4. Anantharaj S, Kundu S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Lett. 2019;4(6):1260. https://doi.org/10.1021/acsenergylett.9b00686.

    Article  CAS  Google Scholar 

  5. Wen QL, Zhao Y, Liu YW, Li HQ, Zhai TY. Ultrahigh-current-density and long-term-durability electrocatalysts for water splitting. Small. 2022;18(4):2104513. https://doi.org/10.1002/smll.202104513.

    Article  CAS  Google Scholar 

  6. Hausmann JN, Schlögl R, Menezes PW, Driess M. Is direct seawater splitting economically meaningful? Energy Environ Sci. 2021;14(7):3679. https://doi.org/10.1039/d0ee03659e.

    Article  CAS  Google Scholar 

  7. Wang HY, Chen LY, Tan L, Liu X, Wen YH, Hou WG, Zhan TR. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. J Colloid Interface Sci. 2022;613:349. https://doi.org/10.1016/j.jcis.2022.01.044.

    Article  CAS  PubMed  Google Scholar 

  8. An L, Wei C, Lu M, Liu HW, Chen YB, Scherer GG, Fisher AC, Xi PX, Xu ZCJ, Yan CH. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv Mater. 2021;33(20):2006328. https://doi.org/10.1002/adma.202006328.

    Article  CAS  Google Scholar 

  9. Sha LN, Yin JL, Ye K, Wang G, Zhu K, Chen K, Yan J, Wang G, Cao DX. The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis. J Mater Chem A. 2019;7(15):9078. https://doi.org/10.1039/C9TA00481E.

    Article  CAS  Google Scholar 

  10. Nie ZW, Liu TT, Chen YF, Liu P, Zhang YQ, Fan ZQ, He H, Chen SG, Zhang FF. In-situ growing low-crystalline Co9S8–Ni3S2 nanohybrid on carbon cloth as a highly active and ultrastable electrode for the oxygen evolution reaction. Electrochim Acta. 2022;402:139558. https://doi.org/10.1016/j.electacta.2021.139558.

    Article  CAS  Google Scholar 

  11. Jo S, Liu WX, Yue YN, Shin KH, Lee KB, Choi H, Hou B, Sohn JI. Novel ternary metals-based telluride electrocatalyst with synergistic effects of high valence non-3d metal and oxophilic Te for pH-universal hydrogen evolution reaction. J Energy Chem. 2023;80:736. https://doi.org/10.1016/j.jechem.2023.02.011.

    Article  CAS  Google Scholar 

  12. Wang ZK, Wang C, Ye L, Liu XE, Xin LT, Yang YY, Wang L, Hou WG, Wen YH, Zhan TR. MnOx film-coated NiFe-LDH nanosheets on Ni foam as selective oxygen evolution electrocatalysts for alkaline seawater oxidation. Inorg Chem. 2022;61(38):15256. https://doi.org/10.1021/acs.inorgchem.2c02579.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang LC, Liang J, Yue LC, Dong K, Li J, Zhao DL, Li ZR, Sun SJ, Luo YS, Liu Q, Cui GW, Aishehri AA, Sun XP. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res Energy. 2022;1(3):9120028. https://doi.org/10.26599/NRE.2022.9120028.

    Article  Google Scholar 

  14. Zhang FH, Liu YF, Wu LB, Ning MH, Song SW, Xiao X, Hadjiev VG, Fan DLE, Wang DZ, Yu L, Chen S, Ren ZF. Efficient alkaline seawater oxidation by a three-dimensional core-shell dendritic NiCo@NiFe layered double hydroxide electrode. Mater Today Phys. 2022;27: 100841. https://doi.org/10.1016/j.mtphys.2022.100841.

    Article  CAS  Google Scholar 

  15. Feng YH, Ma RG, Wang MM, Wang J, Sun TM, Hu LP, Zhu JL, Tang YF, Wang JC. Crystallinity effect of NiFe LDH on the growth of Pt nanoparticles and hydrogen evolution performance. J Phys Chem Lett. 2021;12(30):7221. https://doi.org/10.1021/acs.jpclett.1c02095.

    Article  CAS  PubMed  Google Scholar 

  16. Wang BR, Jiao SH, Wang ZS, Lu MJ, Chen D, Kang YT, Pang GS, Feng SH. Rational design of NiFe LDH@Ni3N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting. J Mater Chem A. 2020;8(33):17202. https://doi.org/10.1039/D0TA01966F.

    Article  CAS  Google Scholar 

  17. Peng JH, Peng K. Rational design of amorphous NiFe-LDH/Co3O4–P heterostructure bifunctional electrocatalysts for overall water splitting. Mater Chem Phys. 2023;297:127412. https://doi.org/10.1016/j.matchemphys.2023.127412.

    Article  CAS  Google Scholar 

  18. Jia Q, Gao JQ, Qiu C, Dong L, Jiang YH, Liu XH, Hong M, Yang SH. Ultrasound-seeded vapor-phase-transport growth of boundary-rich layered double hydroxide nanosheet arrays for highly efficient water splitting. Chem Eng J. 2022;433:134552. https://doi.org/10.1016/j.cej.2022.134552.

    Article  CAS  Google Scholar 

  19. Chen YF, Li JH, You SH, Liu P, Li FJ, Gao MQ, Chen SG, Zhang FF. Constructing robust NiFe LDHs–NiFe alloy gradient hybrid bifunctional catalyst for overall water splitting: one-step electrodeposition and surface reconstruction. Rare Met. 2023;42(7):2272. https://doi.org/10.1007/s12598-022-02249-x.

    Article  CAS  Google Scholar 

  20. Tu QQ, Liu WW, Jiang M, Wang WJ, Kang Q, Wang PC, Zhou WJ, Zhou FM. Preferential adsorption of hydroxide ions onto partially crystalline NiFe-layered double hydroxides leads to efficient and selective OER in alkaline seawater. ACS Appl Energy Mater. 2021;4(5):4630. https://doi.org/10.1021/acsaem.1c00262.

    Article  CAS  Google Scholar 

  21. Liang CW, Pan WS, Zou PC, Liu P, Liu KW, Zhao GY, Fan HJ, Yang C. Highly conductive and mechanically robust NiFe alloy aerogels: an exceptionally active and durable water oxidation catalyst. Small. 2022;18(37):2203663. https://doi.org/10.1002/smll.202203663.

    Article  CAS  Google Scholar 

  22. Liang CW, Zou PC, Nairan A, Zhang YQ, Liu JX, Liu KW, Hu SY, Kang FY, Fan HJ, Yang C. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ Sci. 2020;13(1):86. https://doi.org/10.1039/C9EE02388G.

    Article  CAS  Google Scholar 

  23. Tian L, Yu JT, Wang C, Wang HF, Liu X, Gao HT, Xin LT, Liu DZ, Hou WG, Zhan TR. Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation. Adv Funct Mater. 2022;32(29):2200951. https://doi.org/10.1002/adfm.202200951.

    Article  CAS  Google Scholar 

  24. Li JH, Liu YP, Chen H, Zhang ZK, Zou XX. Design of a multilayered oxygen-evolution electrode with high catalytic activity and corrosion resistance for saline water splitting. Adv Funct Mater. 2021;31(27):2101820. https://doi.org/10.1002/adfm.202101820.

    Article  CAS  Google Scholar 

  25. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 2011;257(7):2717. https://doi.org/10.1016/j.apsusc.2010.10.051.

    Article  CAS  Google Scholar 

  26. Peng LS, Yang N, Yang YQ, Wang Q, Xie XY, Sun-Waterhouse DX, Shang L, Zhang TR, Waterhouse GIN. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew Chem Int Ed. 2021;60(46):24612. https://doi.org/10.1002/anie.202109938.

    Article  CAS  Google Scholar 

  27. Zhang J, Tan PH, Zhao WJ, Lu J, Zhao JH. Raman study of ultrathin Fe3O4 films on GaAs (001) substrate: stoichiometry, epitaxial orientation and strain. J Raman Spectrosc. 2011;42(6):1388. https://doi.org/10.1002/jrs.2863.

    Article  CAS  Google Scholar 

  28. Ma FH, Wu Q, Liu M, Zheng LR, Tong FX, Wang ZY, Wang P, Liu YY, Cheng HF, Dai Y, Zheng ZK, Fan YC, Huang BB. Surface fluorination engineering of NiFe prussian blue analogue derivatives for highly efficient oxygen evolution reaction. ACS Appl Mater Interfaces. 2021;13(4):5142. https://doi.org/10.1021/acsami.0c20886.

    Article  CAS  PubMed  Google Scholar 

  29. Kitiphatpiboon N, Chen M, Feng CR, Zhou YF, Liu CL, Feng ZB, Zhao Q, Abudula A, Guan GQ. Modification of spinel MnCo2O4 nanowire with NiFe-layered double hydroxide nanoflakes for stable seawater oxidation. J Colloid Interface Sci. 2023;632:54. https://doi.org/10.1016/j.jcis.2022.11.044.

    Article  CAS  PubMed  Google Scholar 

  30. Wang CZ, Zhu MZ, Cao ZY, Zhu P, Cao YQ, Xu XY, Xu CX, Yin ZY. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl Catal B. 2021;291:120071. https://doi.org/10.1016/j.apcatb.2021.120071.

    Article  CAS  Google Scholar 

  31. Zhao YQ, Jin B, Zheng Y, Jin HY, Jiao Y, Qiao SZ. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Adv Energy Mater. 2018;8(29):1801926. https://doi.org/10.1002/aenm.201801926.

    Article  CAS  Google Scholar 

  32. Li RP, Li YQ, Yang PX, Ren PH, Wang D, Lu XY, Xu RY, Li YH, Xue JM, Zhang JQ, An MZ, Ma JY, Wang B, Liu HK, Dou SX. Synergistic interface engineering and structural optimization of non-noble metal telluride-nitride electrocatalysts for sustainably overall seawater. Appl Catal B. 2022;318:121834. https://doi.org/10.1016/j.apcatb.2022.121834.

    Article  CAS  Google Scholar 

  33. Tran PKL, Tran DT, Prabhakaran DMS, Kim DH, Kim NH, Lee JH. Highly effective freshwater and seawater electrolysis enabled by atomic Rh-modulated Co-CoO lateral heterostructures. Small. 2021;17(50):2103826. https://doi.org/10.1002/smll.202103826.

    Article  CAS  Google Scholar 

  34. Chen Z, Li QC, Xiang HM, Wang Y, Yang PF, Dai CL, Zhang HD, Xiao WP, Wu ZX, Wang L. Hierarchical porous NiFe-P@NC as an efficient electrocatalyst for alkaline hydrogen production and seawater electrolysis at high current density. Inorg Chem Front. 2023;10(5):1493. https://doi.org/10.1039/D2QI02703H.

    Article  CAS  Google Scholar 

  35. Karthikeyan SC, Kumar RS, Ramakrishnan S, Prabhakaran S, Kim AR, Kim DH, Yoo DJ. Efficient alkaline water/seawater electrolysis by development of ultra-low IrO2 nanoparticles decorated on hierarchical MnO2/rGO nanostructure. ACS Sustain Chem Eng. 2022;10(46):15068. https://doi.org/10.1021/acssuschemeng.2c04074.

    Article  CAS  Google Scholar 

  36. Sun H, Sun JK, Song YY, Zhang YF, Qiu Y, Sun MX, Tian XY, Li CY, Lv Z, Zhang LX. Nickel-cobalt hydrogen phosphate on nickel nitride supported on nickel foam for alkaline seawater electrolysis. ACS Appl Mater Interfaces. 2022;14(19):22061. https://doi.org/10.1021/acsami.2c01643.

    Article  CAS  PubMed  Google Scholar 

  37. Kim MS, Tran DT, Nguyen TH, Dinh VA, Kim NH, Lee JH. Ni single atoms and Ni phosphate clusters synergistically triggered surface functionalized MoS2 nanosheets for high-performance freshwater and seawater electrolysis. Energy Environ Mater. 2022;5(4):1340. https://doi.org/10.1002/eem2.12366.

    Article  CAS  Google Scholar 

  38. Milleroa FJ, Feistelb R, Wrightc DG, McDougall TJ. The composition of standard seawater and the definition of the reference-composition salinity scale. Deep Sea Res Part I. 2008;55(1):50. https://doi.org/10.1016/j.dsr.2007.10.001.

    Article  Google Scholar 

  39. Cui ZG, Cui YZ, Cui CF, Chen Z, Blinks BP. Aqueous foams stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of anionic surfactant. Langmuir. 2010;26(15):12567. https://doi.org/10.1021/la1016559.

    Article  CAS  PubMed  Google Scholar 

  40. Li B, Wen CY, Dong J. Study on the stability, transport behavior and OH release properties of colloidal Mg(OH)2. Colloid Surf A. 2018;549:105. https://doi.org/10.1016/j.colsurfa.2018.03.069.

    Article  CAS  Google Scholar 

  41. Collier NC, Milestone NB. The encapsulation of Mg(OH)2 sludge in composite cement. Cem Concr Res. 2010;40(3):452. https://doi.org/10.1016/j.cemconres.2009.10.007.

    Article  CAS  Google Scholar 

  42. Kilic S, Toprak G, Ozdemir E. Stability of CaCO3 in Ca(OH)2 solution. Int J Miner Process. 2016;147:1. https://doi.org/10.1016/j.minpro.2015.12.006.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 22209054), the Natural Science Foundation of Hunan Province (Nos. 2023JJ30017 and 2023JJ30030) and the Natural Science Foundation of Changsha (No. kq2208223).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Guang Chen or Fei-Fei Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10802 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JH., Chen, H., You, SH. et al. Highly anti-corrosive NiFe LDHs–NiFe alloy hybrid enables long-term stable alkaline seawater electrolysis. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02780-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02780-z

Keywords

Navigation