Skip to main content
Log in

Bimetallic NiCoP catalysts anchored on phosphorus-doped lignin-based carbon for robust oxygen evolution performance

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Oxygen evolution reaction (OER) catalysts are the key core materials that determine the performance of fuel cells, metal-air batteries, electrolytic water decomposition, and other applications. In this work, a green lignin-based non-precious metal OER catalyst was prepared by a simple strategy. Firstly, carboxylated lignin was used to complex Ni and Co in situ, and then they were placed with sodium hypophosphite in the same tube furnace for upstream and downstream high-temperature calcination to construct a lignin carbon-based Ni–Co bimetallic OER catalyst (NiCoP@C). The synthesized catalyst is a porous bimetallic phosphide with a three-dimensional network structure and high-density electrochemical active sites. NiCoP@C exhibited favorable catalytic activity for the oxygen evolution reaction (OER) with overpotential of 280 mV at 10 mA·cm−2 and a Tafel slope of 77 mV·dec−1. Additionally, it exhibited remarkable durability during usage. Density functional theory (DFT) calculations revealed that by leveraging the distinctive structure of transition metal phosphide nanoparticles incorporated into a reticulated substrate, the NiCoP@C catalyst offered an increased number of active sites for OER catalysis, significantly enhancing its stability during practical applications. The present study broadens the utilization pathways of biomass to “turn waste into treasure,” aligning the development concept of green sustainable development.

Graphical Abstract

摘要

析氧反应催化剂是决定燃料电池、金属空气电池、电解水分解等应用性能的关键核心材料。本研究采用简单的策略制备了一种绿色木质素基非贵金属 OER 催化剂。首先用羧化木质素原位络合镍和钴, 然后将它们与次磷酸钠置于同一管式炉中进行上下游高温煅烧, 构建了木质素碳基镍钴双金属 OER 催化剂 (NiCoP@C) 。合成的催化剂是一种多孔双金属磷化物, 具有三维网络结构和高密度的电化学活性位点。NiCoP@C 在氧进化反应 (OER) 中表现出良好的催化活性, 在 10 mA·cm−2 条件下过电位为 280 mV, Tafel 斜率为 77 mV·dec−1。此外, 该催化剂表现出显著的耐久性。密度泛函理论计算显示, 通过利用过渡金属磷化纳米颗粒与网状基底的独特结构, NiCoP@C 催化剂为 OER 催化提供了更多的活性位点, 显著提高了其在实际应用中的稳定性。本研究拓宽了生物质 "变废为宝 "的利用途径, 展现出绿色可持续发展的发展理念。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen YZ, Zhang SM, Jung JCY, Zhang JJ. Carbons as low-platinum catalyst supports and non-noble catalysts for polymer electrolyte fuel cells. Prog Energy Combust Sci. 2023;98:101101. https://doi.org/10.1016/j.pecs.2023.101101.

    Article  Google Scholar 

  2. Wang HW, Wang KL, Zuo YY, Wei MH, Pei PC, Zhang PF, Chen Z, Shang N. Magnetoelectric coupling for metal-air batteries. Adv Funct Mater. 2023;33(5):2210127. https://doi.org/10.1002/adfm.202210127.

    Article  CAS  Google Scholar 

  3. Hao J, Wu KL, Lyu CJ, Yang YQ, Wu HJ, Liu JJ, Liu NY, Lau WM, Zheng JL. Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting. Mater Horiz. 2023;10(7):2312. https://doi.org/10.1039/D3MH00366C.

    Article  CAS  PubMed  Google Scholar 

  4. Liu JL, Zhang JH, Zhou HC, Liu BW, Dong HF, Lin XL, Qin YL. Lignin-derived carbon-supported MoC-FeNi heterostructure as efficient electrocatalysts for oxygen evolution reaction. J Colloid Interface Sci. 2023;629:822. https://doi.org/10.1016/j.jcis.2022.08.141.

    Article  CAS  PubMed  Google Scholar 

  5. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169. https://doi.org/10.1007/s12598-021-01914-x.

    Article  CAS  Google Scholar 

  6. Gao F, Zhang YP, Wu ZY, You HM, Du YK. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coord Chem Rev. 2021;436:213825. https://doi.org/10.1016/j.ccr.2021.213825.

    Article  CAS  Google Scholar 

  7. Cui ZB, Jiao WS, Huang ZY, Chen GZ, Zhang B, Han YH, Huang W. Design and synthesis of noble metal-based alloy electrocatalysts and their application in hydrogen evolution reaction. Small. 2023;19:2301465. https://doi.org/10.1016/j.ccr.2021.213825.

    Article  CAS  Google Scholar 

  8. Wang D, Chang YX, Li YR, Zhang SL, Xu SL. Well-dispersed NiCoS2 nanoparticles/rGO composite with a large specific surface area as an oxygen evolution reaction electrocatalyst. Rare Met. 2021;40(11):3156. https://doi.org/10.1007/s12598-021-01733-0.

    Article  CAS  Google Scholar 

  9. Sun C, Zhao YJ, Yuan XY, Li JB, Jin HB. Bimetal nanoparticles hybridized with carbon nanotube boosting bifunctional oxygen electrocatalytic performance. Rare Met. 2022;41(8):2616. https://doi.org/10.1007/s12598-022-02021-1.

    Article  CAS  Google Scholar 

  10. Deng BL, Guo LP, Lu Y, Rong HB, Cheng DC. Sulfur–nitrogen co-doped graphene supported cobalt–nickel sulfide rGO@SN-CoNi2S4 as highly efficient bifunctional catalysts for hydrogen/oxygen evolution reactions. Rare Met. 2022;41(3):911. https://doi.org/10.1007/s12598-021-01828-8.

    Article  CAS  Google Scholar 

  11. Wu ZP, Lu XF, Zang SQ, Lou XW. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv Funct Mater. 2020;30(15):1910274. https://doi.org/10.1002/adfm.201910274.

    Article  CAS  Google Scholar 

  12. Liu HJ, Luan RN, Li LY, Lv RQ, Chai YM, Dong B. Sulphur-dopant induced breaking of the scaling relation on low-valence Ni sites in nickel ferrite nanocones for water oxidation with industrial-level current density. Chem Eng J. 2023;461:141714. https://doi.org/10.1016/j.cej.2023.141714.

    Article  CAS  Google Scholar 

  13. Yu N, Ma Y, Ren JK, Zhang ZJ, Liu HJ, Nan J, Li YC, Chai YM, Dong B. High negative voltage activating perovskite oxide with bi-vacancy synergistic regulation for water oxidation. Chem Eng J. 2023;478:147415.

    Article  CAS  Google Scholar 

  14. Sun HM, Yan ZH, Liu FM, Xu WC, Cheng FY, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater. 2020;32:1806326. https://doi.org/10.1002/adma.201806326.

    Article  CAS  Google Scholar 

  15. Shen SQ, Wang GS, Yan FF, Yuan T. Research progress in MOF derived transition metal single atomic catalysts for oxygen reduction reaction. Chin J Rare Met. 2023;47(1):28. https://doi.org/10.13373/j.cnki.cjrm.XY22080014.

    Article  Google Scholar 

  16. Xiong CY, Lin X, Liu HG, Li MR, Li BB, Jiao SS, Zhao W, Duan C, Dai L, Ni YH. Fabrication of 3D expanded graphite-based (MnO2 nanowalls and PANI nanofibers) hybrid as bifunctional material for high-performance supercapacitor and sensor. J Electrochem Soc. 2019;166(16):a3965. https://doi.org/10.1149/2.0181916jes.

    Article  CAS  Google Scholar 

  17. Fu WY, Lin YX, Wang MS, Si S, Wei L, Zhao XS, Wei YS. Sepaktakraw-like catalyst Mn-doped CoP enabling ultrastable electrocatalytic oxygen evolution at 100 mA·cm−2 in alkali media. Rare Met. 2022;41(9):3069. https://doi.org/10.1007/s12598-022-02006-0.

    Article  CAS  Google Scholar 

  18. Lu SS, Zhang LM, Dong YW, Zhang JQ, Yan XT, Sun DF, Shang X, Chi JQ, Chai YM, Dong B. Tungsten-doped Ni–Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. J Mater Chem A. 2019;7(28):16859. https://doi.org/10.1039/C9TA03944A.

    Article  CAS  Google Scholar 

  19. Wang XY, Fei Y, Chen J, Pan YX, Yuan WY, Zhang LY, Guo CX, Li CM. Directionally in Situ self-assembled, high-density, macropore-oriented, CoP-impregnated, 3D hierarchical porous carbon sheet nanostructure for superior electrocatalysis in the hydrogen evolution reaction. Small. 2022;18(2):2103866. https://doi.org/10.1002/adfm.201505509.

    Article  CAS  Google Scholar 

  20. Xu XH, Zhang YJ, Miao XY. Synthesis and electrocatalytic performance of 3D coral-like NiCo-P. Chin J Rare Met. 2022;46(11):1449. https://doi.org/10.13373/j.cnki.cjrm.XY22080001.

    Article  CAS  Google Scholar 

  21. Sheng J, Sun SD, Jia GD, Zhu S, Li Y. Doping effect on mesoporous carbon-supported single-site bifunctional catalyst for zinc-air batteries. ACS Nano. 2022;16(10):15994. https://doi.org/10.1021/acsnano.2c03565.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou YN, Dong YW, Wu Y, Dong B, Liu HJ, Zhai XJ, Han GQ, Liu DP, Chai YM. Nitrate induced precise atom substitution and vacancies for overall water splitting. Chem Eng J. 2023;463:142380. https://doi.org/10.1016/j.cej.2023.142380.

    Article  CAS  Google Scholar 

  23. Xie JY, Liu ZZ, Li J, Feng L, Yang M, Ma Y, Liu DP, Wang L, Chai YM, Dong B. Fe-doped CoP core-shell structure with open cages as efficient electrocatalyst for oxygen evolution. J Energy Chem. 2020;48:328. https://doi.org/10.1016/j.jechem.2020.02.031.

    Article  Google Scholar 

  24. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des. 2020;186:108199. https://doi.org/10.1016/j.matdes.2019.108199.

    Article  CAS  Google Scholar 

  25. Wang XG, Li W, Xiong DH, Petrovykh DY, Liu LF. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv Funct Mater. 2016;26(23):4067. https://doi.org/10.1002/adfm.201505509.

    Article  CAS  Google Scholar 

  26. Liang HF, Gandi AN, Anjum DH, Wang XB, Schwingenschlogl U, Alshareef HN. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 2016;16(12):7718. https://doi.org/10.1021/acs.nanolett.6b03803.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang J, Zhou XL, Lv HG, Yu HQ, Yu Y. Bimetallic-based electrocatalysts for oxygen evolution reaction. Adv Funct Mater. 2023;33(10):2212160. https://doi.org/10.1002/adfm.202212160.

    Article  CAS  Google Scholar 

  28. Li WY, Zhang C, Han MM, Ye YX, Zhang SB, Liu YY, Wang GZ, Liang CH, Zhang HM. Ambient electrosynthesis of ammonia using core-shell structured Au@C catalyst fabricated by one-step laser ablation technique. ACS Appl Mater Interfaces. 2019;11(47):44186. https://doi.org/10.1021/acsami.9b14770.

    Article  CAS  PubMed  Google Scholar 

  29. Jin RX, Huang J, Chen GL, Chen W, Ouyang B, Chen DL, Kan EJ, Zhu H, Li CR, Yang DZ, Ostrikov K. Water-sprouted, plasma-enhanced Ni-Co phospho-nitride nanosheets boost electrocatalytic hydrogen and oxygen evolution. Chem Eng J. 2020;402:126257. https://doi.org/10.1016/j.cej.2020.126257.

    Article  CAS  Google Scholar 

  30. Lu YK, Liu CC, Xu SJ, Liu Y, Jiang DL, Zhu JJ. Facile synthesis of hierarchical NiCoP nanosheets/NiCoP nanocubes homojunction electrocatalyst for highly efficient and stable hydrogen evolution reaction. Appl Surf Sci. 2021;565:150537. https://doi.org/10.1016/j.apsusc.2021.150537.

    Article  CAS  Google Scholar 

  31. Feng CC, Zhao B, Bi YP. Constructing large-size and ultrathin NiCoP nanosheets on an Fe2O3 photoanode toward efficient solar water splitting. J Mater Chem A. 2022;10(24):12811. https://doi.org/10.1039/D2TA02702J.

    Article  CAS  Google Scholar 

  32. Zhang YZ, Zhu ZZ, Guo X, Qi JY, Li X. Plasma-assisted seconds-level-impregnated preparation of bifunctional N-doped NiCoP with O vacancies enhancement: driving efficient water splitting. Chem Eng J. 2023;452:139230. https://doi.org/10.1016/j.cej.2022.139230.

    Article  CAS  Google Scholar 

  33. Hatakeyama H, Hatakeyama T. Lignin structure, properties, and applications. Adv Polym Sci. 2009;232:1. https://doi.org/10.1007/12_2009_12.

    Article  CAS  Google Scholar 

  34. Li PH, Zhou H, Tao YT, Wei YM, Ren JP, Wu WJ. A review on the effects of doping elements on the properties and applications of lignin-based carbon materials. Sustain Energy Fuels. 2022;6(20):4582. https://doi.org/10.1039/D2SE00578F.

    Article  CAS  Google Scholar 

  35. Lin XL, Liu JL, Qiu XQ, Liu BW, Wang XF, Chen LH, Qin YL. Ru-FeNi alloy heterojunctions on lignin-derived carbon as bifunctional electrocatalysts for efficient overall water splitting. Angew Chem Int Ed. 2023;62(33):e202306333. https://doi.org/10.1002/anie.202306333.

    Article  CAS  Google Scholar 

  36. Zhang WL, Yin J, Wang CW, Zhao L, Jian WB, Lu K, Lin HB, Qiu XQ, Alshareef HN. Lignin derived porous carbons: synthesis methods and supercapacitor applications. Small Methods. 2021;5(11):2100896. https://doi.org/10.1002/smtd.202100896.

    Article  CAS  Google Scholar 

  37. Feng PX, Wang H, Huang PP, Zhong LJ, Gan SY, Wang W, Niu L. Nitrogen-doped lignin-derived porous carbons for supercapacitors: Effect of nanoporous structure. Chem Eng J. 2023;471:144817. https://doi.org/10.1016/j.cej.2023.144817.

    Article  CAS  Google Scholar 

  38. Zhao J, Zhang WJ, Shen DK, Zhang HY, Wang ZH. Preparation of porous carbon materials from black liquor lignin and its utilization as CO2 adsorbents. J Energy Inst. 2023;107:101179. https://doi.org/10.1016/j.joei.2023.101179.

    Article  CAS  Google Scholar 

  39. Seto C, Chang BP, Tzoganakis C, Mekonnen TH. Lignin derived nano-biocarbon and its deposition on polyurethane foam for wastewater dye adsorption. Int J Biol Macromol. 2021;185:629. https://doi.org/10.1016/j.ijbiomac.2021.06.185.

    Article  CAS  PubMed  Google Scholar 

  40. Shen MX, Ruan CP, Chen Y, Jiang CH, Ai KL, Lu LH. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces. 2015;7(2):1207. https://doi.org/10.1021/am507033x.

    Article  CAS  PubMed  Google Scholar 

  41. Bedia J, Rosas JM, Rodríguez-Mirasol J, Cordero T. Pd supported on mesoporous activated carbons with high oxidation resistance as catalysts for toluene oxidation. Appl Catal B. 2010;94(1):8. https://doi.org/10.1016/j.apcatb.2009.10.015.

    Article  CAS  Google Scholar 

  42. García-Mateos FJ, Cordero-Lanzac T, Berenguer R, Morallon E, Cazorla-Amorós D, Rodríguez-Mirasol J, Cordero T. Lignin-derived Pt supported carbon (submicron) fiber electrocatalysts for alcohol electro-oxidation. Appl Catal B. 2017;211:18. https://doi.org/10.1016/j.apcatb.2017.04.008.

    Article  CAS  Google Scholar 

  43. Zhou H, Hong S, Zhang H, Chen YT, Xu HH, Wang X, Jiang Z, Chen S, Liu Y. Toward biomass-based single-atom catalysts and plastics: Highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols. Appl Catal B. 2019;256:117767. https://doi.org/10.1016/j.apcatb.2019.117767.

    Article  CAS  Google Scholar 

  44. Zhou H, Xu HH, Liu Y. Aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Co/Mn-lignin coordination complexes-derived catalysts. Appl Catal B. 2019;244:965. https://doi.org/10.1016/j.apcatb.2018.12.046.

    Article  CAS  Google Scholar 

  45. Peng XW, Zhang L, Chen ZX, Zhong LX, Zhao DK, Chi X, Zhao XX, Li LG, Lu XH, Leng K, Liu CB, Liu W, Tang W, Loh KP. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv Mater. 2019;31(16):1900341. https://doi.org/10.1002/adma.201900341.

    Article  CAS  Google Scholar 

  46. Hoang VC, Gomes VG, Dinh KN. Ni-and P-doped carbon from waste biomass: a sustainable multifunctional electrode for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Electrochim Acta. 2019;314:49. https://doi.org/10.1016/j.electacta.2019.05.053.

    Article  CAS  Google Scholar 

  47. Wang SC, Bai JX, Innocent MT, Wang QQ, Xiang HX, Tang JG, Zhu MF. Lignin-based carbon fibers: formation, modification and potential applications. Green Energy Environ. 2022;7(4):578. https://doi.org/10.1016/j.gee.2021.04.006.

    Article  CAS  Google Scholar 

  48. Zhang LZ, Wang YY, Yang DJ, Wang H, Liu WF, Li ZX. Multilayer two-dimensional lignin/ZnO composites with excellent anti-UV aging properties for polymer films. Green Chem Eng. 2022;3(4):338. https://doi.org/10.1016/j.gce.2021.12.003.

    Article  Google Scholar 

  49. Tang QQ, Wu H, Zhou MS, Yang DJ. Preparation of a novel high-performance lignin-based anionic adsorption resin for efficient removal of Cr (VI) in aqueous solutions. Ind Crops Prod. 2023;199:116720. https://doi.org/10.1016/j.indcrop.2023.116720.

    Article  CAS  Google Scholar 

  50. Ge F, Xia HH, Li J, Xue YQ, Su JT, Yang XH, Jiang JC, Zhou MH. Lignin meets MOFs: lignin derived metal carbon material for the catalytic hydrotreatment of guaiacol to cyclohexanol. Chem Eng J. 2023;473:145375. https://doi.org/10.1016/j.cej.2023.145375.

    Article  CAS  Google Scholar 

  51. Li W, Wang GH, Sui WJ, Xu Y, Parvez AM, Si CL. Novel metal-lignin assembly strategy for one-pot fabrication of lignin-derived heteroatom-doped hierarchically porous carbon and its application in high-performance supercapacitor. Int J Biol Macromol. 2023;234:123603. https://doi.org/10.1016/j.ijbiomac.2023.123603.

    Article  CAS  PubMed  Google Scholar 

  52. Xiong LYZ, Liu BW, Wang H, Lin XL. Lignin-derived CoO-Ni7P3@C heterojunction electrocatalysts with excellent oxygen evolution reaction properties prepared by a simple and scale-up in situ method. Ind Eng Chem Res. 2023;62(18):7040. https://doi.org/10.1021/acs.iecr.3c00622.

    Article  CAS  Google Scholar 

  53. Barrett EP, Joyner LG, Halenda PP. The Determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73:373. https://doi.org/10.1021/ja01145a126.

    Article  CAS  Google Scholar 

  54. Mahala C, Basu M. Nanosheets of NiCo2O4/NiO as efficient and stable electrocatalyst for oxygen evolution reaction. ACS Omega. 2017;2(11):7559. https://doi.org/10.1021/acsomega.7b00957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 22278092), the Science and Technology Research Project of Guangzhou (Nos. 2023A03J0034, 2023A04J0077 and 202201000002), the State Key Laboratory of Pulp and Paper Engineering (No. 202313) and the Key Discipline of Materials Science and Engineering, Bureau of Education of Guangzhou (No. 202255464).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Liang Lin or Huan Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6521 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, LYZ., Liu, BW., Du, L. et al. Bimetallic NiCoP catalysts anchored on phosphorus-doped lignin-based carbon for robust oxygen evolution performance. Rare Met. 43, 3084–3095 (2024). https://doi.org/10.1007/s12598-024-02718-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02718-5

Keywords

Navigation