Skip to main content
Log in

A direct polymeric carbon nitride/tungsten oxide Z-scheme heterostructure for efficient photocatalytic hydrogen generation via reforming of plastics into value-added chemicals

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To promote charge transfer and separation for efficient photocatalysis, a direct Z-scheme heterostructure was constructed by coupling polymeric carbon nitride (PCN) and WO3. Interestingly, the obtained PCN/WO3 Z-scheme heterostructure could photocatalytically produce hydrogen and value-added chemicals (e.g., formate and acetate) by reforming of plastic polylactic acid (PLA) in alkaline aqueous condition. By optimizing WO3 contents and reaction conditions, the obtained PCN/WO3 heterostructure exhibits much increased photocatalytic activity for PLA photoreforming under visible light, with hydrogen evolution rate reaching 402.90 μmol·g−1·h−1, which is 3.5 times that of PCN. It is revealed that the Z-scheme charge transfer between PCN and WO3 mainly contributes to the promoted charge separation and thus the improved photocatalytic activity. Moreover, with h+ and ·OH experimentally evidenced as the predominant active species, a possible reaction pathway for the reforming of PLA into value-added chemicals (e.g., formate and acetate) over PCN/WO3 Z-scheme heterostructure is cleared by monitoring the reaction intermediates and radicals. This work paves a carbon neutrality and scalable route toward the synergistical production of hydrogen and value-added chemicals by utilizing and recycling plastic waste.

摘要

为了促进电荷转移和分离以提升光催化效率, 通过耦合聚合氮化碳 (PCN) 和WO3构建了Z型异质结光催化剂 (PCN/WO3) 。在碱性条件下, 这种Z型异质结能够光催化重整聚乳酸 (PLA) 产生氢气和高附加值化学品 (如甲酸盐和乙酸盐) 。通过优化WO3的含量和反应pH条件, PCN/WO3异质结光催化剂光催化重整聚乳酸产氢的反应速率最高可达402.90 μmol·g−1·h−1, 是PCN的3.5倍。研究表明, PCN和WO3之间的Z型电荷转移路径能够显著促进电荷分离从而提升光催化活性。此外, 研究还表明h+ 和 •OH是主要的反应活性物种。通过监测反应中间产物和自由基, 揭示了PCN/WO3 Z型异质结将聚乳酸转化为高附加值化学品 (如甲酸盐和乙酸盐) 可能的反应途径。这项工作为实现塑料废弃物的回收利用和协同生产氢气及增值化学品提供了一条碳中和且可扩展的道路。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gibb BC. Plastics are forever. Nat Chem. 2019;11(5):394. https://doi.org/10.1038/s41557-019-0260-7.

    Article  CAS  PubMed  Google Scholar 

  2. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. https://doi.org/10.1126/sciadv.1700782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garcia JM, Robertson ML. The future of plastics recycling. Science. 2017;358(6365):870. https://doi.org/10.1126/science.aaq0324.

    Article  CAS  PubMed  Google Scholar 

  4. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL. Plastic waste inputs from land into the ocean. Science. 2015;347(6223):768. https://doi.org/10.1126/science.1260352.

    Article  CAS  PubMed  Google Scholar 

  5. Sardon H, Dove AP. Plastics recycling with a difference. Science. 2018;360(6387):380. https://doi.org/10.1126/science.aat4997.

    Article  CAS  PubMed  Google Scholar 

  6. Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux ML, Texier H, Gavalda S, Cot M, Guémard E, Dalibey M, Nomme J, Cioci G, Barbe S, Chateau M, André I, Duquesne S, Marty A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020;580(7802):216. https://doi.org/10.1038/s41586-020-2149-4.

    Article  CAS  PubMed  Google Scholar 

  7. Ragaert K, Delva L, Van Geem K. Mechanical and chemical recycling of solid plastic waste. Waste Manage. 2017;69:24. https://doi.org/10.1016/j.wasman.2017.07.044.

    Article  CAS  Google Scholar 

  8. Jehanno C, Alty JW, Roosen M, De Meester S, Dove AP, Chen EYX, Leibfarth FA, Sardon H. Critical advances and future opportunities in upcycling commodity polymers. Nature. 2022;603(7903):803. https://doi.org/10.1038/s41586-021-04350-0.

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki G, Uchida N, Tuyen LH, Tanaka K, Matsukami H, Kunisue T, Takahashi S, Viet PH, Kuramochi H, Osako M. Mechanical recycling of plastic waste as a point source of microplastic pollution. Environ Pollut. 2022;303:119114. https://doi.org/10.1016/j.envpol.2022.119114.

    Article  CAS  PubMed  Google Scholar 

  10. Wong S, Ngadi N, Tuan Abdullah TA, Inuwa IM. Catalytic cracking of LDPE dissolved in benzene using nickel-impregnated zeolites. Ind Eng Chem Res. 2016;55(9):2543. https://doi.org/10.1021/acs.iecr.5b04518.

    Article  CAS  Google Scholar 

  11. Burange AS, Gawande MB, Lam FLY, Jayaram RV, Luque R. Heterogeneously catalyzed strategies for the deconstruction of high density polyethylene: plastic waste valorisation to fuels. Green Chem. 2015;17(1):146. https://doi.org/10.1039/C4GC01760A.

    Article  CAS  Google Scholar 

  12. Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Nizami AS. Catalytic pyrolysis of plastic waste: a review. Process Saf Environ Prot. 2016;102:822. https://doi.org/10.1016/j.psep.2016.06.022.

    Article  CAS  Google Scholar 

  13. Vance BC, Kots PA, Wang C, Hinton ZR, Quinn CM, Epps TH, Korley LTJ, Vlachos DG. Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia. Appl Catal B. 2021;299:120483. https://doi.org/10.1016/j.apcatb.2021.120483.

    Article  CAS  Google Scholar 

  14. Vogt BD, Stokes KK, Kumar SK. Why is recycling of postconsumer plastics so challenging? ACS Appl Polym Mater. 2021;3(9):4325. https://doi.org/10.1021/acsapm.1c00648.

    Article  CAS  Google Scholar 

  15. Wu X, Xie S, Zhang H, Zhang Q, Sels BF, Wang Y. Metal sulfide photocatalysts for lignocellulose valorization. Adv Mater. 2021;33(50):2007129. https://doi.org/10.1002/adma.202007129.

    Article  CAS  Google Scholar 

  16. Pichler CM, Bhattacharjee S, Rahaman M, Uekert T, Reisner E. Conversion of polyethylene waste into gaseous hydrocarbons via integrated tandem chemical–photo/electrocatalytic processes. ACS Catal. 2021;11(15):9159. https://doi.org/10.1021/acscatal.1c02133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou C, Wu J, Li Y, Cao H. Highly efficient UV-visible-infrared light-driven photothermocatalytic steam biomass reforming to H2 on Ni nanoparticles loaded on mesoporous silica. Energy Environ Sci. 2022;15(7):3041. https://doi.org/10.1039/D2EE00816E.

    Article  CAS  Google Scholar 

  18. Costa MB, de Araújo MA, Tinoco MVDL, Brito JFD, Mascaro LH. Current trending and beyond for solar-driven water splitting reaction on WO3 photoanodes. J Energy Chem. 2022;73:88. https://doi.org/10.1016/j.jechem.2022.06.003.

    Article  CAS  Google Scholar 

  19. Wang Q, Cao XX, Liu T, Wu KJ, Deng J, Chen JS, Cai YJ, Shen MQ, Yu C, Wang WK. Microfluidic assembly of WO3/MoS2 Z-scheme heterojunction as tandem photocatalyst for nitrobenzene hydrogenation. Rare Met. 2023;42(2):484. https://doi.org/10.1007/s12598-022-02169-w.

    Article  CAS  Google Scholar 

  20. Cai L, Du Y, Guan X, Shen S. CdS nanocrystallites sensitized ZnO nanorods with plasmon enhanced photoelectrochemical performance. Chin Chem Lett. 2019;30(12):2363. https://doi.org/10.1016/j.cclet.2019.07.020.

    Article  CAS  Google Scholar 

  21. Wei D, Tan Y, Wang Y, Kong T, Shen S, Mao SS. Function-switchable metal/semiconductor junction enables efficient photocatalytic overall water splitting with selective water oxidation products. Sci Bull. 2020;65(16):1389. https://doi.org/10.1016/j.scib.2020.04.042.

    Article  CAS  Google Scholar 

  22. Wang L, Song XY, Ong HJ, Song YN. Preparation of flower-like Bi/CuS photocatalyst by photo-reduction method. Chin J Rare Met. 2023;47(1):177. https://doi.org/10.13373/j.cnki.cjrm.XY22060030.

    Article  Google Scholar 

  23. Qin Z, Guan X, Guo X, Guo P, Wang M, Huang Z, Chen Y. Integrated Z-scheme nanosystem based on metal sulfide nanorods for efficient photocatalytic pure water splitting. Chemsuschem. 2020;13(24):6528. https://doi.org/10.1002/cssc.202002171.

    Article  CAS  PubMed  Google Scholar 

  24. Liu F, Xue F, Zhang C, Lu K, Chen G, Ye X, Chen W, Guo L, Liu M. Noble-metal-free chalcogenide nanotwins for efficient and stable photocatalytic pure water splitting by surface phosphorization and cocatalyst modification. Mater Today Energy. 2022;30:101180. https://doi.org/10.1016/j.mtener.2022.101180.

    Article  CAS  Google Scholar 

  25. Liu F, Xue F, Si Y, Chen G, Guan X, Lu K, Liu M. Functionalized Cd0.5Zn0.5S chalcogenide nanotwins enabling Z-scheme photocatalytic water splitting. ACS Appl Nano Mater. 2021;4(1):759. https://doi.org/10.1021/acsanm.0c03054.

    Article  CAS  Google Scholar 

  26. Chen S, Qi Y, Hisatomi T, Ding Q, Asai T, Li Z, Ma SSK, Zhang F, Domen K, Li C. Efficient visible-light-driven Z-scheme overall water splitting using a MgTa2O6−xNy/TaON heterostructure photocatalyst for H2 evolution. Angew Chem Int Ed. 2015;54(29):8498. https://doi.org/10.1002/anie.201502686.

    Article  CAS  Google Scholar 

  27. Cui J, Liu T, Dong B, Qi Y, Yuan H, Gao J, Yang D, Zhang F. Flux-assisted synthesis of prism-like octahedral Ta3N5 single-crystals with controllable facets for promoted photocatalytic H2 evolution. Solar RRL. 2021;5(6):2000574. https://doi.org/10.1002/solr.202000574.

    Article  CAS  Google Scholar 

  28. Nurlaela E, Ould-Chikh S, Llorens I, Hazemann JL, Takanabe K. Establishing efficient cobalt-based catalytic sites for oxygen evolution on a Ta3N5 photocatalyst. Chem Mater. 2015;27(16):5685. https://doi.org/10.1021/acs.chemmater.5b02139.

    Article  CAS  Google Scholar 

  29. Li Y, Wang Y, Dong CL, Huang YC, Chen J, Zhang Z, Meng F, Zhang Q, Huangfu Y, Zhao D, Gu L, Shen S. Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chem Sci. 2021;12(10):3633. https://doi.org/10.1039/D0SC07093A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Huang Z, Dong CL, Shi J, Cheng C, Guan X, Zong S, Luo B, Cheng Z, Wei D, Huang YC, Shen S, Guo L. Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution. Chem Eng J. 2022;431:134101. https://doi.org/10.1016/j.cej.2021.134101.

    Article  CAS  Google Scholar 

  31. Lin Z, Zhang Z, Wang Y, Peng Z, Wang X, Wang R, Huang YC, Meng F, Li M, Dong CL, Zhang Q, Gu L, Shen S. Anchoring single nickel atoms on carbon-vacant carbon nitride nanosheets for efficient photocatalytic hydrogen evolution. Chem Res Chin Univ. 2022;38(5):1243. https://doi.org/10.1007/s40242-022-2194-7.

    Article  CAS  Google Scholar 

  32. Wang W, Zhou H, Liu Y, Zhang S, Zhang Y, Wang G, Zhang H, Zhao H. Formation of B–N–C coordination to stabilize the exposed active nitrogen atoms in g-C3N4 for dramatically enhanced photocatalytic ammonia synthesis performance. Small. 2020;16(13):1906880. https://doi.org/10.1002/smll.201906880.

    Article  CAS  Google Scholar 

  33. Yang M, Lian R, Zhang X, Wang C, Cheng J, Wang X. Photocatalytic cyclization of nitrogen-centered radicals with carbon nitride through promoting substrate/catalyst interaction. Nat Commun. 2022;13(1):4900. https://doi.org/10.1038/s41467-022-32623-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ou H, Ning S, Zhu P, Chen S, Han A, Kang Q, Hu Z, Ye J, Wang D, Li Y. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew Chem Int Ed. 2022;61(34):e202206579. https://doi.org/10.1002/anie.202206579.

    Article  CAS  Google Scholar 

  35. Zhou AQ, Yang JM, Zhu XW, Zhu XL, Liu JY, Zhong K, Chen HX, Chu JY, Du YS, Song YH, Qian JC, Li HM, Xu H. Self-assembly construction of NiCo LDH/ultrathin g-C3N4 nanosheets photocatalyst for enhanced CO2 reduction and charge separation mechanism study. Rare Met. 2022;41(6):2118. https://doi.org/10.1007/s12598-022-01960-z.

    Article  CAS  Google Scholar 

  36. Ou M, Wan S, Zhong Q, Zhang S, Song Y, Guo L, Cai W, Xu Y. Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4 (040) with enhanced visible-light-induced photocatalytic oxidation performance. Appl Catal B. 2018;221:97. https://doi.org/10.1016/j.apcatb.2017.09.005.

    Article  CAS  Google Scholar 

  37. Liu F, Shi R, Wang Z, Weng Y, Che CM, Chen Y. Direct Z-scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting. Angew Chem Int Ed. 2019;58(34):11791. https://doi.org/10.1002/anie.201906416.

    Article  CAS  Google Scholar 

  38. Zhou H, Wang M, Wang F. Oxygen-controlled photo-reforming of biopolyols to CO over Z-scheme CdS@g-C3N4. Chem. 2022;8(2):465. https://doi.org/10.1016/j.chempr.2021.10.021.

    Article  CAS  Google Scholar 

  39. Xu H, She X, Fei T, Song Y, Liu D, Li H, Yang X, Yang J, Li H, Song L, Ajayan PM, Wu J. Metal-oxide-mediated subtractive manufacturing of two-dimensional carbon nitride for high-efficiency and high-yield photocatalytic H2 evolution. ACS Nano. 2019;13(10):11294. https://doi.org/10.1021/acsnano.9b04443.

    Article  CAS  PubMed  Google Scholar 

  40. Meng J, Wang X, Liu Y, Ren M, Zhang X, Ding X, Guo Y, Yang Y. Acid-induced molecule self-assembly synthesis of Z-scheme WO3/g-C3N4 heterojunctions for robust photocatalysis against phenolic pollutants. Chem Eng J. 2021;403:126354. https://doi.org/10.1016/j.cej.2020.126354.

    Article  CAS  Google Scholar 

  41. Liang ZY, Wei JX, Wang X, Yu Y, Xiao FX. Elegant Z-scheme-dictated g-C3N4 enwrapped WO3 superstructures: a multifarious platform for versatile photoredox catalysis. J Mater Chem A. 2017;5(30):15601. https://doi.org/10.1039/C7TA04333C.

    Article  CAS  Google Scholar 

  42. Fu J, Xu Q, Low J, Jiang C, Yu J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B. 2019;243:556. https://doi.org/10.1016/j.apcatb.2018.11.011.

    Article  CAS  Google Scholar 

  43. Chen X, Wang J, Chai Y, Zhang Z, Zhu Y. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction. Adv Mater. 2021;33(7):2007479. https://doi.org/10.1002/adma.202007479.

    Article  CAS  Google Scholar 

  44. Zhao D, Dong CL, Wang B, Chen C, Huang YC, Diao Z, Li S, Guo L, Shen S. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv Mater. 2019;31(43):1903545. https://doi.org/10.1002/adma.201903545.

    Article  CAS  Google Scholar 

  45. Zhao D, Wang Y, Dong CL, Huang YC, Chen J, Xue F, Shen S, Guo L. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat Energy. 2021;6(4):388. https://doi.org/10.1038/s41560-021-00795-9.

    Article  CAS  Google Scholar 

  46. Zhao D, Wang Y, Dong CL, Meng F, Huang YC, Zhang Q, Gu L, Liu L, Shen S. Electron-deficient Zn-N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 2022;14(1):223. https://doi.org/10.1007/s40820-022-00962-x.

    Article  CAS  Google Scholar 

  47. Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev. 2019;48(7):2109. https://doi.org/10.1039/C8CS00542G.

    Article  CAS  PubMed  Google Scholar 

  48. Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N, Li Y, Sharp ID, Kudo A, Yamada T, Domen K. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater. 2016;15(6):611. https://doi.org/10.1038/nmat4589.

    Article  CAS  PubMed  Google Scholar 

  49. Song X, Li W, Liu X, Wu Y, He D, Ke Z, Cheng L, Jiang C, Wang G, Xiao X, Li Y. Oxygen vacancies enable the visible light photoactivity of chromium-implanted TiO2 nanowires. J Energy Chem. 2021;55:154. https://doi.org/10.1016/j.jechem.2020.07.013.

    Article  CAS  Google Scholar 

  50. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15. https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  CAS  Google Scholar 

  51. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104. https://doi.org/10.1063/1.3382344.

    Article  CAS  PubMed  Google Scholar 

  52. Pawar RC, Kang S, Han H, Choi H, Lee CS. In situ reduction and exfoliation of g-C3N4 nanosheets with copious active sites via a thermal approach for effective water splitting. Catal Sci Technol. 2019;9(4):1004. https://doi.org/10.1039/C8CY02318B.

    Article  CAS  Google Scholar 

  53. Katsumata K, Motoyoshi R, Matsushita N, Okada K. Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J Hazard Mater. 2013;260:475. https://doi.org/10.1016/j.jhazmat.2013.05.058.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang D, Guo Y, Zhao Z. Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl Catal B. 2018;226:1. https://doi.org/10.1016/j.apcatb.2017.12.044.

    Article  CAS  Google Scholar 

  55. Jin B, Yao G, Wang X, Ding K, Jin F. Photocatalytic oxidation of glucose into formate on nano TiO2 catalyst. ACS Sustain Chem Eng. 2017;5(8):6377. https://doi.org/10.1021/acssuschemeng.7b00364.

    Article  CAS  Google Scholar 

  56. Yu S, Li J, Zhang Y, Li M, Dong F, Zhang T, Huang H. Local spatial charge separation and proton activation induced by surface hydroxylation promoting photocatalytic hydrogen evolution of polymeric carbon nitride. Nano Energy. 2018;50:383. https://doi.org/10.1016/j.nanoen.2018.05.053.

    Article  CAS  Google Scholar 

  57. Wang Y, Li X, Liu S, Liu Y, Kong T, Zhang H, Duan X, Chen C, Wang S. Roles of catalyst structure and gas surface reaction in the generation of hydroxyl radicals for photocatalytic oxidation. ACS Catal. 2022;12(5):2770. https://doi.org/10.1021/acscatal.1c05447.

    Article  CAS  Google Scholar 

  58. Li YY, Si Y, Zhou BX, Huang WQ, Hu W, Pan A, Fan X, Huang G-F. Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable in situ surface engineering and morphology. Nanoscale. 2019;11(35):16393. https://doi.org/10.1039/C9NR05413H.

    Article  CAS  PubMed  Google Scholar 

  59. Coridan RH, Shaner M, Wiggenhorn C, Brunschwig BS, Lewis NS. Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. J Phys Chem C. 2013;117(14):6949. https://doi.org/10.1021/jp311947x.

    Article  CAS  Google Scholar 

  60. Uekert T, Kasap H, Reisner E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J Am Chem Soc. 2019;141(38):15201. https://doi.org/10.1021/jacs.9b06872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang H, Yuan X, Wang H, Chen X, Wu Z, Jiang L, Xiong W, Zeng G. Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance. Appl Catal B. 2016;193:36. https://doi.org/10.1016/j.apcatb.2016.03.075.

    Article  CAS  Google Scholar 

  62. Lei B, Cui W, Chen P, Chen L, Li J, Dong F. C-doping induced oxygen-vacancy in WO3 nanosheets for CO2 activation and photoreduction. ACS Catal. 2022;12(15):9670. https://doi.org/10.1021/acscatal.2c02390.

    Article  CAS  Google Scholar 

  63. Lin Z, Wang Y, Peng Z, Huang YC, Meng F, Chen JL, Dong CL, Zhang Q, Wang R, Zhao D, Chen J, Gu L, Shen S. Single-metal atoms and ultra-small clusters manipulating charge carrier migration in polymeric perylene diimide for efficient photocatalytic oxygen production. Adv Energy Mater. 2022;12(26):2200716. https://doi.org/10.1002/aenm.202200716.

    Article  CAS  Google Scholar 

  64. Li H, Yu H, Quan X, Chen S, Zhang Y. Uncovering the key role of the fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (metal = Cu, Ag, Au). ACS Appl Mater Interfaces. 2016;8(3):2111. https://doi.org/10.1021/acsami.5b10613.

    Article  CAS  PubMed  Google Scholar 

  65. Wang H, Sun X, Li D, Zhang X, Chen S, Shao W, Tian Y, Xie Y. Boosting hot-electron generation: exciton dissociation at the order-disorder interfaces in polymeric photocatalysts. J Am Chem Soc. 2017;139(6):2468. https://doi.org/10.1021/jacs.6b12878.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang Z, Yates JT Jr. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev. 2012;112(10):5520. https://doi.org/10.1021/cr3000626.

    Article  CAS  PubMed  Google Scholar 

  67. Bie C, Zhu B, Wang L, Yu H, Jiang C, Chen T, Yu J. A bifunctional CdS/MoO2/MoS2 catalyst enhances photocatalytic H2 evolution and pyruvic acid synthesis. Angew Chem Int Ed. 2022;61(44):e202212045. https://doi.org/10.1002/anie.202212045.

    Article  CAS  Google Scholar 

  68. Liu K, Ma J, Yang X, Liu Z, Li X, Zhang J, Cui R, Sun R. Phosphorus/oxygen co-doping in hollow-tube-shaped carbon nitride for efficient simultaneous visible-light-driven water splitting and biorefinery. Chem Eng J. 2022;437:135232. https://doi.org/10.1016/j.cej.2022.135232.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52225606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Hua Shen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 14427 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RZ., Lin, Z., Wang, YQ. et al. A direct polymeric carbon nitride/tungsten oxide Z-scheme heterostructure for efficient photocatalytic hydrogen generation via reforming of plastics into value-added chemicals. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02714-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02714-9

Keywords

Navigation