Skip to main content
Log in

XOR spin logic operated by unipolar current based on field-free spin–orbit torque switching induced by a lateral interface

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Spin logics have emerged as a promising avenue for the development of logic-in-memory architectures. In particular, the realization of XOR spin logic gates using a single spin–orbit torque device shows great potential for low-power stateful logic circuits in the next generation. In this study, we successfully obtained the XOR logic gate by utilizing a spin–orbit torque device with a lateral interface, which was created by local ion implantation in the Ta/Pt/Co/Ta Hall device exhibiting perpendicular magnetic anisotropy. The angle of the lateral interface is set at 45° relative to the current direction, leading to the competition between symmetry breaking and current-driven Néel-type domain wall motion. Consequently, the field-free magnetic switching reversed is realized by the same sign of current amplitude at this interface. Based on this field-free magnetic switching behavior, we successfully proposed an XOR logic gate that could be implemented using only a single spin–orbit torque Hall device. This study provides a potentially viable approach toward efficient spin logics and in-memory computing architectures.

Graphical abstract

摘要

自旋逻辑已经成为开发内存中逻辑架构中比较有前途的途径。特别是,利用单个自旋轨道矩器件实现XOR自旋逻辑门,在下一代低功耗逻辑电路中显示出了巨大的潜力。在这项研究中,我们成功地通过利用具有横向界面的自旋轨道矩器件来实现XOR逻辑门,该横向界面是通过在具有垂直磁各向异性的Ta/Pt/Co/Ta Hall器件中进行局部离子注入而创建的。横向界面的角度相对于电流方向设置为45°,导致了对称性破缺机制和电流驱动的Néel型畴壁运动机制之间的竞争。因此,在该界面上可以通过同符号的电流实现无外场磁化翻转曲线。基于这种无外场磁化翻转曲线,我们成功提出了一种仅使用单个自旋轨道矩器件来实现的XOR逻辑门。这项研究为高效的自旋逻辑和内存计算架构提供了一种潜在的可行途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Y, Liang J, Yang H, Zheng H, Wang K. Current-induced out-of-plane effective magnetic field in antiferromagnet/heavy metal/ferromagnet/heavy metal multilayer. Appl Phys Lett. 2020;117(9): 092404. https://doi.org/10.1063/5.0016040.

    Article  CAS  Google Scholar 

  2. Liu XH, Edmonds KW, Zhou ZP, Wang KY. Tuning interfacial spins in antiferromagnetic–ferromagnetic–heavy-metal heterostructures via spin-orbit torque. Phys Rev Appl. 2020;13(1):014059. https://doi.org/10.1103/PhysRevApplied.13.014059.

    Article  CAS  Google Scholar 

  3. Yu G, Upadhyaya P, Fan Y, Alzate J, Jiang WJ, Wong KL, Takei S, Bender SA, Chang LT, Jiang Y, Lang MR, Tang JS, Wang Y, Tserkovnyak Y, Amiri PK, Wang KL. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat Nanotechnol. 2014;9:548. https://doi.org/10.1038/nnano.2014.94.

    Article  CAS  PubMed  Google Scholar 

  4. Yu G, Chang LT, Akyol M, Upadhyaya P, He C, Li X, Wong KL, Amiri PK, Wang KL. Current-driven perpendicular magnetization switching in Ta/CoFeB/[TaOx or MgO/TaOx] films with lateral structural asymmetry. Appl Phys Lett. 2014;105(10):102411. https://doi.org/10.1063/1.4895735.

    Article  CAS  Google Scholar 

  5. Liu QQ, Yang G, Zhang JY, Feng GN, Feng C, Zhan Q, Li MH, Yu GH. Tunable perpendicular anisotropic magnetoresistance in CoO/Co/Pt heterostructures. Rare Met. 2023;42(2):579. https://doi.org/10.1007/s12598-017-0932-7.

    Article  CAS  Google Scholar 

  6. Miron IM, Garello K, Gaudin G, Zermatten PJ, Costache MV, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature. 2011;476:189. https://doi.org/10.1038/nature10309.

    Article  CAS  PubMed  Google Scholar 

  7. Cao Y, Rushforth AW, Sheng Y, Zheng H, Wang K. Tuning a binary ferromagnet into a multistate synapse with spin-orbit-torque-induced plasticity. Adv Funct Mater. 2019;29(25):1808104. https://doi.org/10.1002/adfm.201808104.

    Article  CAS  Google Scholar 

  8. Li Y, Zhang N, Wang K. Spin logic operations based on magnetization switching by asymmetric spin current. Sci China Inf Sci. 2022;65:1. https://doi.org/10.1007/s11432-020-3246-8.

    Article  Google Scholar 

  9. Zhang Yu, Shang ZX, Wang GC, Wang XL. Spin polarization of chiral molecules and electronic device applications. Chin J Rare Met. 2023;47(8):1163. https://doi.org/10.13373/j.cnki.cjrm.XY23030017.

    Article  Google Scholar 

  10. Miron IM, Moore T, Szambolics H, Budaprejbeanu LD, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A. Fast current-induced domain-wall motion controlled by the Rashba effect. Nat Mater. 2011;10:419. https://doi.org/10.1038/nmat3020.

    Article  CAS  PubMed  Google Scholar 

  11. Liu LQ, Lee OJ, Gudmundsen TJ, Ralph DC, Buhrman RA. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin hall effect. Phys Rev Lett. 2012;109(9):5. https://doi.org/10.1103/PhysRevLett.109.096602.

    Article  CAS  Google Scholar 

  12. Luo Z, Hrabec A, Dao TP, Sala G, Finizio S, Feng J, Mayr S, Raabe J, Gambardella P, Heyderman LJ. Current-driven magnetic domain-wall logic. Nature. 2020;579:214. https://doi.org/10.1038/s41586-020-2061-y.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Y, Yang G, Shen J, Gao S, Zhang J, Qi J, Lyu H, Yu G, Jin K, Wang S. Implementation of complete Boolean logic functions in single spin–orbit torque device. AIP Adv. 2021;11(1): 015045. https://doi.org/10.1063/5.0030016.

    Article  Google Scholar 

  14. Gao S, Yang G, Cui B, Wang S, Zeng F, Song C, Pan FJN. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell. Nanoscale. 2016;8(25):12819. https://doi.org/10.1039/C6NR03169B.

    Article  CAS  PubMed  Google Scholar 

  15. Wan C, Zhang X, Yuan Z, Fang C, Kong W, Zhang Q, Wu H, Khan U, Han X. Programmable spin logic based on spin Hall effect in a single device. Adv Electron Mater. 2017;3(3):1600282. https://doi.org/10.1002/aelm.201600282.

    Article  CAS  Google Scholar 

  16. Zhao MK, Wan CH, Luo XM, Wang YZ, Ma TY, Yang WL, Zhang Y, Yin L, Yu GQ, Han XF. Field-free programmable spin logics based on spin Hall effect. Appl. Phys. Lett. 2021;119(21):212405 https://doi.org/10.1063/5.0067879.

  17. Li R, Li Y, Sheng Y, Bekele ZA, Wang K. All-electrical multifunctional spin logics by adjusting the spin current density gradient in a single device. ACS Appl Electron Mater. 2021;3:2646. https://doi.org/10.1021/acsaelm.1c00248.

    Article  CAS  Google Scholar 

  18. Yang M, Deng Y, Wu Z, Luo J, Ji Y, Zheng HZ, Wang K, Cai K, Edmonds KW, Li Y, Sheng Y, Wang S, Cui Y. Spin logic devices via electric field controlled magnetization reversal by spin-orbit torque. IEEE Electron Device Lett. 2019;40(9):1554. https://doi.org/10.1109/LED.2019.2932479.

    Article  CAS  Google Scholar 

  19. Wang X, Wan C, Kong W, Zhang X, Xing Y, Fang C, Tao B, Yang W, Huang L, Wu H, Irfan M, Han X. Field-free programmable spin logics via chirality-reversible spin-orbit torque switching. Adv Mater. 2018;30(31):1801318. https://doi.org/10.1002/adma.201801318.

    Article  CAS  Google Scholar 

  20. Zhao X, Dong Y, Chen W, Xie X, Bai L, Chen Y, Kang S, Yan S, Tian Y. Purely electrical controllable complete spin logic in a single magnetic heterojunction. Adv Funct Mater. 2021;31(42):2105359. https://doi.org/10.1002/adfm.202105359.

    Article  CAS  Google Scholar 

  21. Dong Y, Zhao X, Han X, Fan Y, Xie X, Chen Y, Bai L, Dai Y, Yan S, Tian Y. Spin–orbit torque controllable complete spin logic in a single magnetic heterojunction. Appl Phys Lett. 2021;118(15):152403. https://doi.org/10.1063/5.0043218.

    Article  CAS  Google Scholar 

  22. Li Y, Yang M, Yu G, Cui B, Luo J. Current controlled non-hysteresis magnetic switching in the absence of magnetic field. Appl Phys Lett. 2022;120(6):012401. https://doi.org/10.1063/1.4973629.

    Article  CAS  Google Scholar 

  23. Wu H, Nance J, Razavi SA, Lujan D, Dai B, Liu Y, He H, Cui B, Wu D, Wong K, Sobotkiewich K, Li X, Carman GP, Wang KL. Chiral symmetry breaking for deterministic switching of perpendicular magnetization by spin-orbit torque. Nano Lett. 2021;21:515. https://doi.org/10.1021/acs.nanolett.0c03629.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JM, Kim DJ, Cheon CY, Moon KW, Kim C, Van PC, Jeong JR, Hwang C, Lee KJ, Park BG. Observation of thermal spin-orbit torque in W/CoFeB/MgO structures. Nano Lett. 2020;20:7803. https://doi.org/10.1021/acs.nanolett.0c03376.

    Article  CAS  PubMed  Google Scholar 

  25. Emori S, Bauer U, Ahn SM, Martinez E, Beach GSD. Current-driven dynamics of chiral ferromagnetic domain walls. Nat Mater. 2013;12:611. https://doi.org/10.1038/nmat3675.

    Article  CAS  PubMed  Google Scholar 

  26. Ryu KS, Thomas L, Yang SH, Parkin S. Chiral spin torque at magnetic domain walls. Nat Nanotechnol. 2013;8:527. https://doi.org/10.1038/nnano.2013.102.

    Article  CAS  PubMed  Google Scholar 

  27. Shahbazi K, Kim JV, Nembach HT, Shaw JM, Bischof A, Rossell MD, Jeudy V, Moore TA, Marrows CH. Domain-wall motion and interfacial Dzyaloshinskii-Moriya interactions in Pt/Co/Ir(tIr)/Ta multilayers. Phys Rev B. 2019;99(9):024415. https://doi.org/10.1103/PhysRevB.99.024415.

    Article  Google Scholar 

  28. Murray N, Liao WB, Wang TC, Chang LJ, Tsai LZ, Tsai TY, Lee SF, Pai CF. Field-free spin-orbit torque switching through domain wall motion. Phys Rev B. 2019;100(10):134417. https://doi.org/10.1103/PhysRevB.100.104441.

    Article  Google Scholar 

  29. Dzyaloshinsky IE. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids. 1958;4(4):241. https://doi.org/10.1016/0022-3697(58)90076-3.

    Article  CAS  Google Scholar 

  30. Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev. 1960;120(1):91. https://doi.org/10.1103/PhysRev.120.91.

    Article  CAS  Google Scholar 

  31. Di K, Zhang VL, Lim HS, Ng SC, Kuok MH, Yu J, Yoon J, Qiu X, Huang Y. Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film. Phys Rev Lett. 2015;114(4): 047201. https://doi.org/10.1103/PhysRevLett.114.047201.

    Article  CAS  PubMed  Google Scholar 

  32. Cao Y, Sheng Y, Edmonds KW, Ji Y, Zheng H, Wang K. Deterministic magnetization switching using lateral spin-orbit torque. Adv Mater. 2020;32(16):1907929. https://doi.org/10.1002/adma.201907929.

    Article  CAS  Google Scholar 

  33. Yang M, Li Y, Luo J, Deng Y, Zhang N, Zhang X, Li S, Cui Y, Yu P, Yang T, Sheng Y, Wang S, Xu J, Zhao C, Wang K. All-linear multistate magnetic switching induced by electrical current. Phys Rev Appl. 2021;15(5): 014055. https://doi.org/10.1103/PhysRevApplied.15.014055.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Chinese Academy of Sciences (Nos. XDA18000000 and Y201926), the Youth Innovation Promotion Association of CAS (No. 2020118), Beijing Municipal Natural Science Foundation (No. 4244071) and the Funding Support from Research Grants Council—Early Career Scheme (No. 26200520).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei-Yin Yang or Jun Luo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 60 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YR., Yang, MY., Yu, GQ. et al. XOR spin logic operated by unipolar current based on field-free spin–orbit torque switching induced by a lateral interface. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02713-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02713-w

Keywords

Navigation