Skip to main content
Log in

Reduction of dinitrogen to ammonia on doped three-atom clusters Nb2M (M = Sc to Cu & Y to Ag)

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Catalytic reduction of dinitrogen to ammonia under mild conditions remains an attractive topic for the purpose of lowering energy consumption. Three-atom metal clusters have been proved an ideal model to explore highly efficient catalysts taking advantage of unique geometric/electronic structures and cooperative active sites. Here a study of N2 activation and reduction on seventeen bimetallic Nb2M (M = Sc to Cu, and Y to Ag) clusters was reported. Three key processes for ammonia fixation (namely nitrogen activation, hydrogenation, and ammonia desorption) are fully studied, and three preferred systems (Nb2Ni, Nb2Rh and Nb2Pd) are highlighted with outstanding catalytic performance. The d-σ and d-π* orbital hybridizations between these metal clusters and N2 were demonstrated and the internal association with the N≡N bond activation was unveiled. By examining the ammonia synthesis on four chosen Nb2M clusters (M = Fe, Ni, Rh and Pd), it can be elucidated that the distal pathway is more favorable than the alternative pathway in these systems. This work not only clarifies the N2 reduction on the bimetallic Nb2M clusters, but also guides efficient bimetallic catalyst design.

Graphical abstract

摘要

在温和条件下催化氮气还原合成氨是一项具有吸引力的降低能源消耗的固氮研究课题。三原子金属团簇由于其独特的几何/电子结构和协同活性位点,是探索高效催化剂的理想模型。在前期工作发现Nb3团簇催化活性基础上,本文系统研究了17个掺杂团簇Nb2M (M=Sc-Cu, Y-Ag)催化氮气还原的反应机制。通过对三个关键过程(氮活化、加氢和氨脱附)的系统研究,筛选出了催化活性突出的三个优选体系(Nb2Ni、Nb2Rh和Nb2Pd),揭示了金属团簇与氮气之间的d-σ和d-π*轨道杂化作用,诠释了其与N≡N键活化的内在关联。通过对比研究优选体系 (Nb2Fe、Nb2Ni、Nb2Rh和Nb2Pd)的反应动力学,阐明了在这些二元合金体系中合成氨的最优化路径。这项工作不仅系统研究了双金属团簇三原子团簇Nb2M催化氮气还原的高效活性,也为其它反应双金属催化剂的理性设计提供依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. MacKay BA, Fryzuk MD. Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem Rev. 2004;104(2):385. https://doi.org/10.1021/cr020610c.

    Article  CAS  PubMed  Google Scholar 

  2. Schrock RR. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc Chem Res. 2005;38(12):955. https://doi.org/10.1021/ar0501121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hazari N. Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem Soc Rev. 2010;39(11):4044. https://doi.org/10.1039/b919680n.

    Article  CAS  PubMed  Google Scholar 

  4. van der Vlugt JI. Advances in selective activation and application of ammonia in homogeneous catalysis. Chem Soc Rev. 2010;39(6):2302. https://doi.org/10.1039/b925794m.

    Article  CAS  PubMed  Google Scholar 

  5. Jia HP, Quadrelli EA. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev. 2014;43(2):547. https://doi.org/10.1039/c3cs60206k.

    Article  CAS  PubMed  Google Scholar 

  6. Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev. 2014;114(8):4041. https://doi.org/10.1021/cr400641x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Ham CJ, Koper MT, Hetterscheid DG. Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev. 2014;43(15):5183. https://doi.org/10.1039/c4cs00085d.

    Article  CAS  PubMed  Google Scholar 

  8. McWilliams SF, Holland PL. Dinitrogen binding and cleavage by multinuclear iron complexes. Acc Chem Res. 2015;48(7):2059. https://doi.org/10.1021/acs.accounts.5b00213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tanaka H, Nishibayashi Y, Yoshizawa K. Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc Chem Res. 2016;49(5):987. https://doi.org/10.1021/acs.accounts.6b00033.

    Article  CAS  PubMed  Google Scholar 

  10. Tang C, Qiao SZ. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem Soc Rev. 2019;48(12):3166. https://doi.org/10.1039/c9cs00280d.

    Article  CAS  PubMed  Google Scholar 

  11. Kim S, Loose F, Chirik PJ. Beyond ammonia: nitrogen-element bond forming reactions with coordinated dinitrogen. Chem Rev. 2020;120(12):5637. https://doi.org/10.1021/acs.chemrev.9b00705.

    Article  CAS  PubMed  Google Scholar 

  12. Cui CN, Zhang HC, Cheng R, Huang BB, Luo ZX. On the nature of three-atom metal cluster catalysis for N2 reduction to ammonia. ACS Catal. 2022;12:14964. https://doi.org/10.1021/acscatal.2c04146.

    Article  CAS  Google Scholar 

  13. Fu X, Pedersen JB, Zhou Y, Saccoccio M, Li S, Sazinas R, Li K, Andersen SZ, Xu A, Deissler NH, Mygind JBV, Wei C, Kibsgaard J, Vesborg PCK, Norskov JK, Chorkendorff I. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science. 2023;379(6633):707. https://doi.org/10.1126/science.adf4403.

    Article  CAS  PubMed  Google Scholar 

  14. Reiners M, Baabe D, Munster K, Zaretzke MK, Freytag M, Jones PG, Coppel Y, Bontemps S, Rosal ID, Maron L, Walter MD. NH3 formation from N2 and H2 mediated by molecular tri-iron complexes. Nat Chem. 2020;12(8):740. https://doi.org/10.1038/s41557-020-0483-7.

    Article  CAS  PubMed  Google Scholar 

  15. Singh D, Buratto WR, Torres JF, Murray LJ. Activation of dinitrogen by polynuclear metal complexes. Chem Rev. 2020;120(12):5517. https://doi.org/10.1021/acs.chemrev.0c00042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Merakeb L, Bennaamane S, De Freitas J, Clot E, Mezailles N, Robert M. Molecular electrochemical reductive splitting of dinitrogen with a molybdenum complex. Angew Chem Int Ed. 2022;61(40):e202209899. https://doi.org/10.1002/anie.202209899.

    Article  CAS  Google Scholar 

  17. Lin YX, Zhang SN, Xue ZH, Zhang JJ, Su H, Zhao TJ, Zhai GY, Li XH, Antonietti M, Chen JS. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nat Commun. 2019;10(1):4380. https://doi.org/10.1038/s41467-019-12312-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xue ZH, Zhang SN, Lin YX, Su H, Zhai GY, Han JT, Yu QY, Li XH, Antonietti M, Chen JS. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% faradaic efficiency. J Am Chem Soc. 2019;141(38):14976. https://doi.org/10.1021/jacs.9b07963.

    Article  CAS  PubMed  Google Scholar 

  19. Mehta P, Barboun P, Go DB, Hicks JC, Schneider WF. Catalysis enabled by plasma activation of strong chemical bonds: a review. ACS Energy Lett. 2019;4(5):1115. https://doi.org/10.1021/acsenergylett.9b00263.

    Article  CAS  Google Scholar 

  20. Gao L, Guo C, Zhao M, Yang H, Ma X, Liu C, Liu X, Sun X, Wei Q. Electrocatalytic N2 reduction on FeS2 nanoparticles embedded in graphene oxide in acid and neutral conditions. ACS Appl Mater Interfaces. 2021;13(42):50027. https://doi.org/10.1021/acsami.1c15678.

    Article  CAS  PubMed  Google Scholar 

  21. Bharath G, Liu C, Banat F, Kumar A, Hai A, Kumar Nadda A, Kumar Gupta V, Abu Haija M, Balamurugan J. Plasmonic Au nanoparticles anchored 2d WS2@RGO for high-performance photoelectrochemical nitrogen reduction to ammonia. Chem Eng J. 2023;465:143040. https://doi.org/10.1016/j.cej.2023.143040.

    Article  CAS  Google Scholar 

  22. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011;3(8):634. https://doi.org/10.1038/nchem.1095.

    Article  CAS  PubMed  Google Scholar 

  23. Xu H, Cheng D, Cao D, Zeng XC. A universal principle for a rational design of single-atom electrocatalysts. Nat Catal. 2018;1(5):339. https://doi.org/10.1038/s41929-018-0063-z.

    Article  CAS  Google Scholar 

  24. Ling CY, Niu XH, Li Q, Du AJ, Wang JL. Metal-free single atom catalyst for N2 fixation driven by visible light. J Am Chem Soc. 2018;140(43):14161. https://doi.org/10.1021/jacs.8b07472.

    Article  CAS  PubMed  Google Scholar 

  25. Iqbal MS, Yao ZB, Ruan YK, Iftikhar R, Hao LD, Robertson AW, Imran SM, Sun ZY. Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Met. 2023;42(4):1075. https://doi.org/10.1007/s12598-022-02215-7.

    Article  CAS  Google Scholar 

  26. He CZ, Zhang YX, Wang J, Fu L. Anchor single atom in h-BN assist NO synthesis NH3: a computational view. Rare Met. 2022;41(10):3456. https://doi.org/10.1007/s12598-022-02059-1.

    Article  CAS  Google Scholar 

  27. Wu J, Li JH, Yu YX. Highly stable Mo-doped Fe2P and Fe3P monolayers as low-onset-potential electrocatalysts for nitrogen fixation. Catal Sci Technol. 2021;11(4):1419. https://doi.org/10.1039/d0cy02192j.

    Article  CAS  Google Scholar 

  28. Wu J, Yu YX. Highly selective electroreduction of nitrate to ammonia on a Ru-doped tetragonal Co2P monolayer with low-limiting overpotential. Catal Sci Technol. 2021;11(21):7160. https://doi.org/10.1039/d1cy01217g.

    Article  CAS  Google Scholar 

  29. Wu J, Li JH, Yu YX. Single Nb or W atom-embedded BP monolayers as highly selective and stable electrocatalysts for nitrogen fixation with low-onset potentials. ACS Appl Mater Interfaces. 2021;13(8):10026. https://doi.org/10.1021/acsami.0c21429.

    Article  CAS  PubMed  Google Scholar 

  30. Wu J, Yu YX. Multi-level descriptor construction for screening eligible single-atom-embedded ternary B3C2P3 monolayers as nitrogen fixation catalysts. J Phys Chem C. 2022;126(30):12460. https://doi.org/10.1021/acs.jpcc.2c02876.

    Article  CAS  Google Scholar 

  31. Schwarz H. Doping effects in cluster-mediated bond activation. Angew Chem Int Ed. 2015;54(35):10090. https://doi.org/10.1002/anie.201500649.

    Article  CAS  Google Scholar 

  32. Liu JC, Ma XL, Li Y, Wang YG, Xiao H, Li J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat Commun. 2018;9(1):1610. https://doi.org/10.1038/s41467-018-03795-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geng C, Li J, Weiske T, Schwarz H. Ta2+-mediated ammonia synthesis from N2 and H2 at ambient temperature. Proc Natl Acad Sci. 2018;115(46):11680. https://doi.org/10.1073/pnas.1814610115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cui CN, Jia YY, Zhang HY, Geng LJ, Luo ZX. Plasma-assisted chain reactions of Rh3+ clusters with dinitrogen: N≡N bond dissociation. J Phys Chem Lett. 2020;11(19):8222. https://doi.org/10.1021/acs.jpclett.0c02218.

    Article  CAS  PubMed  Google Scholar 

  35. Liu B, Manavi N, Deng H, Huang C, Shan N, Chikan V, Pfromm P. Activation of N2 on manganese nitride-supported Ni3 and Fe3 clusters and relevance to ammonia formation. J Phys Chem Lett. 2021;12(28):6535. https://doi.org/10.1021/acs.jpclett.1c01752.

    Article  CAS  PubMed  Google Scholar 

  36. Cui CN, Jia YH, Zhang HY, Geng LJ, Luo ZX. Plasma-assisted dinitrogen activation via dual platinum cluster catalysis: a strategy for ammonia synthesis under mild conditions. CCS Chem. 2023;5(3):682. https://doi.org/10.31635/ccschem.022.202201879.

    Article  CAS  Google Scholar 

  37. Zhang D, Prezhdo OV, Xu L. Design of a four-atom cluster embedded in carbon nitride for electrocatalytic generation of multi-carbon products. J Am Chem Soc. 2023;145(12):7030. https://doi.org/10.1021/jacs.3c01561.

    Article  CAS  PubMed  Google Scholar 

  38. Hidai M, Mizobe Y. Recent advances in the chemistry of dinitrogen complexes. Chem Rev. 1995;95(4):1115. https://doi.org/10.1021/cr00036a008.

    Article  CAS  Google Scholar 

  39. Liu H, Wei L, Liu F, Pei Z, Shi J, Wang ZJ, He D, Chen Y. Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions. ACS Catal. 2019;9(6):5245. https://doi.org/10.1021/acscatal.9b00994.

    Article  CAS  Google Scholar 

  40. Rohr BA, Singh AR, Norskov JK. A theoretical explanation of the effect of oxygen poisoning on industrial Haber–Bosch catalysts. J Catal. 2019;372:33. https://doi.org/10.1016/j.jcat.2019.01.042.

    Article  CAS  Google Scholar 

  41. Van Stappen C, Decamps L, Cutsail GE III, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. The spectroscopy of nitrogenases. Chem Rev. 2020;120:5005. https://doi.org/10.1021/acs.chemrev.9b00650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jasniewski AJ, Lee CC, Ribbe MW, Hu Y. Reactivity, mechanism, and assembly of the alternative nitrogenases. Chem Rev. 2020;120(12):5107. https://doi.org/10.1021/acs.chemrev.9b00704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanifuji K, Ohki Y. Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chem Rev. 2020;120(12):5194. https://doi.org/10.1021/acs.chemrev.9b00544.

    Article  CAS  PubMed  Google Scholar 

  44. Wang CH, DeBeer S. Structure, reactivity, and spectroscopy of nitrogenase-related synthetic and biological clusters. Chem Soc Rev. 2021;50(15):8743. https://doi.org/10.1039/d1cs00381j.

    Article  CAS  PubMed  Google Scholar 

  45. Liu L, Corma A. Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles. Chem Rev. 2023;123(8):4855. https://doi.org/10.1021/acs.chemrev.2c00733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi L, Yin Y, Wang S, Sun H. Rational catalyst design for N2 reduction under ambient conditions: strategies toward enhanced conversion efficiency. ACS Catal. 2020;10(12):6870. https://doi.org/10.1021/acscatal.0c01081.

    Article  CAS  Google Scholar 

  47. Chen S, Gao Y, Wang W, Prezhdo OV, Xu L. Prediction of three-metal cluster catalysts on two-dimensional W2N3 support with integrated descriptors for electrocatalytic nitrogen reduction. ACS Nano. 2023;17(2):1522. https://doi.org/10.1021/acsnano.2c10607.

    Article  CAS  Google Scholar 

  48. Ma XL, Liu JC, Xiao H, Li J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J Am Chem Soc. 2017;140(1):46. https://doi.org/10.1021/jacs.7b10354.

    Article  CAS  PubMed  Google Scholar 

  49. Li ZY, Li Y, Mou LH, Chen JJ, Liu QY, He SG, Chen H. A facile N≡N bond cleavage by the trinuclear metal center in vanadium carbide cluster anions V3C4-. J Am Chem Soc. 2020;142(24):10747. https://doi.org/10.1021/jacs.0c02021.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Z, Xu X. Efficient heteronuclear diatom electrocatalyst for nitrogen reduction reaction: Pd-Nb diatom supported on black phosphorus. ACS Appl Mater Interfaces. 2020;12(51):56987. https://doi.org/10.1021/acsami.0c16362.

    Article  CAS  PubMed  Google Scholar 

  51. Wang YY, Ding XL, Ji ZW, Huang XM, Li W. Heteronuclear trimetallic MFe2 and M2Fe (m=V, Nb, and Ta) clusters for dinitrogen activation. Chem Phys Chem. 2023;24(12):e202200952. https://doi.org/10.1002/cphc.202200952.

    Article  CAS  PubMed  Google Scholar 

  52. Du S, Liu X, Liu Z, Li G, Fan H, Xie H, Jiang L. Dinitrogen activation by heteronuclear bimetallic cluster anion FeV- in the gas phase. JACS Au. 2023;3(6):1723. https://doi.org/10.1021/jacsau.3c00143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang SY, Shi L, Bai XW, Li Q, Ling CY, Wang JL. Highly efficient photo-/electrocatalytic reduction of nitrogen into ammonia by dual-metal sites. ACS Cent Sci. 2020;6(10):1762. https://doi.org/10.1021/acscentsci.0c00552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu R, Li Y, Zeng Q, Wang F, Shang J. Bimetallic pairs supported on graphene as efficient electrocatalysts for nitrogen fixation: search for the optimal coordination atoms. Chem Sus Chem. 2020;13(14):3636. https://doi.org/10.1002/cssc.202000964.

    Article  CAS  Google Scholar 

  55. Ma XL, Yang Y, Xu LM, Xiao H, Yao WZ, Li J. Theoretical investigation on hydrogenation of dinitrogen triggered by singly dispersed bimetallic sites. J Mater Chem A. 2022;10(11):6146. https://doi.org/10.1039/d1ta08350c.

    Article  CAS  Google Scholar 

  56. Cheng R, Cui CN, Luo ZX. Catalysis of dinitrogen activation and reduction by a single Fe13 cluster and its doped systems. Phys Chem Chem Phys. 2023;25(2):1196. https://doi.org/10.1039/d2cp04619a.

    Article  CAS  PubMed  Google Scholar 

  57. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  CAS  Google Scholar 

  58. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B. 1992;46(11):6671. https://doi.org/10.1103/physrevb.46.6671.

    Article  CAS  Google Scholar 

  59. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  60. Gholizadeh R, Yu YX. N2O + CO reaction over Si- and Se-doped graphenes: an ab initio DFT study. Appl Surf Sci. 2015;357:1187. https://doi.org/10.1016/j.apsusc.2015.09.163.

    Article  CAS  Google Scholar 

  61. Henkelman G, Jónsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys. 1999;111(15):7010. https://doi.org/10.1063/1.480097.

    Article  CAS  Google Scholar 

  62. Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys. 2000;113(22):9978. https://doi.org/10.1063/1.1323224.

    Article  CAS  Google Scholar 

  63. Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for bader decomposition of charge density. Comput Mater Sci. 2006;36(3):354. https://doi.org/10.1016/j.commatsci.2005.04.010.

    Article  Google Scholar 

  64. Yu M, Trinkle DR. Accurate and efficient algorithm for bader charge integration. J Chem Phys. 2011;134(6):064111. https://doi.org/10.1063/1.3553716.

    Article  CAS  PubMed  Google Scholar 

  65. Deringer VL, Tchougreeff AL, Dronskowski R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A. 2011;115(21):5461. https://doi.org/10.1021/jp202489s.

    Article  CAS  PubMed  Google Scholar 

  66. Maintz S, Deringer VL, Tchougreeff AL, Dronskowski R. Lobster: a tool to extract chemical bonding from plane-wave based DFT. J Comput Chem. 2016;37(11):1030. https://doi.org/10.1002/jcc.24300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Momma K, Izumi F. Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44(6):1272. https://doi.org/10.1107/s0021889811038970.

    Article  CAS  Google Scholar 

  68. Wang V, Xu N, Liu JC, Tang G, Geng WT. Vaspkit: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun. 2021;267:108033. https://doi.org/10.1016/j.cpc.2021.108033.

    Article  CAS  Google Scholar 

  69. Guo X, Gu J, Lin S, Zhang S, Chen Z, Huang S. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J Am Chem Soc. 2020;142(12):5709. https://doi.org/10.1021/jacs.9b13349.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by CAS Project for Young Scientists in Basic Research (No. YSBR-050), the National Natural Science Foundation of China (Nos. 92261113 and 222721809), and Beijing Natural Science Foundation (No. 2232035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Xun Luo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 13995 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Cui, CN. & Luo, ZX. Reduction of dinitrogen to ammonia on doped three-atom clusters Nb2M (M = Sc to Cu & Y to Ag). Rare Met. (2024). https://doi.org/10.1007/s12598-024-02680-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02680-2

Keywords

Navigation