Skip to main content
Log in

Controlling hydrogenation of C=C and C=O bonds in cinnamaldehyde using Pt1/Ni and Pt1/Co single-atom alloy catalysts

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

概要

由于肉桂醛分子中的两个不饱和官能团具有复杂的共轭体系,因此选择性氢化肉桂醛分子中的C=C和C=O键以生成所需产物是一项具有挑战性的工作。在本研究中,我们利用了一种简单的球磨法合成Pt基单原子合金催化剂,这种催化剂可作为氢化肉桂醛生成高附加值产物的选择性控制器。具体而言,Pt1/Ni单原子合金催化剂表现出优异的氢化肉桂醛选择性(约82.3%),而 Pt1/Co单原子合金催化剂则表现出较高的肉桂醇选择性(约71.2%)。详细的表征结果表明,不同的产物选择性是由于Ni和Co固有的电子特性,以及它们与Pt物种的相互作用,从而导致肉桂醛分子在Pt1/Ni(平行模式)和Pt1/Co(垂直模式)单原子合金催化剂上的不同吸附构型。此外,Pt和载体之间的协同效应增强了反应活性。这项工作为合理设计用于选择性氢化α,β-不饱和醛的单原子合金催化剂提供了启示。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Wang XF, Liang XH, Geng P, Li QB. Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catal. 2020;10(4):2395. https://doi.org/10.1021/acscatal.9b05031.

    Article  CAS  Google Scholar 

  2. Luneau M, Lim JS, Patel DA, Sykes ECH, Friend CM, Sautet P. Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: a review. Chem Rev. 2020;120(23):12834. https://doi.org/10.1021/acs.chemrev.0c00582.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao E, Zhang WJ, Dong L, Zbořil R, Chen ZP. Photocatalytic transfer hydrogenation reactions using water as the proton source. ACS Catal. 2023;13(11):7557. https://doi.org/10.1021/acscatal.3c00326.

    Article  CAS  Google Scholar 

  4. Zhou YY, Chen C, Li QL, Liu YB, Wei T, Liu YZ, Zeng ZB, Bradshaw D, Zhang B, Huo J. Precise control of selective hydrogenation of α,β-unsaturated aldehydes in water mediated by ammonia borane. Appl Catal B Environ. 2022;311:121348. https://doi.org/10.1016/j.apcatb.2022.121348.

    Article  CAS  Google Scholar 

  5. Kennedy G, Baker LR, Somorjai GA. Selective amplification of C=O bond hydrogenation on Pt/TiO2: catalytic reaction and sum-frequency generation vibrational spectroscopy studies of crotonaldehyde hydrogenation. Angew Chem Int Ed. 2014;53(13):3405. https://doi.org/10.1002/anie.201400081.

    Article  CAS  Google Scholar 

  6. Bai SX, Bu LZ, Shao Q, Zhu X, Huang XQ. Multicomponent Pt-based zigzag nanowires as selectivity controllers for selective hydrogenation reactions. J Am Chem Soc. 2018;140(27):8384. https://doi.org/10.1021/jacs.8b03862.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang N, Shao Q, Wang PT, Zhu X, Huang XQ. Porous Pt-Ni nanowires within in situ generated metal-organic frameworks for highly chemoselective cinnamaldehyde hydrogenation. Small. 2018;14(19):1704318. https://doi.org/10.1002/smll.201704318.

    Article  CAS  Google Scholar 

  8. Mahata N, Gonçalves F, Pereira MFR, Figueiredo JL. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst. Appl Catal A Gen. 2008;339(2):159. https://doi.org/10.1016/j.apcata.2008.01.023.

    Article  CAS  Google Scholar 

  9. Liu QL, Li YL, Fan YN, Su CY, Li GQ. Chemoselective hydrogenation of α,β-unsaturated aldehydes over Rh nanoclusters confined in a metal–organic framework. J Mater Chem A. 2020;8(22):11442. https://doi.org/10.1039/d0ta01845g.

    Article  CAS  Google Scholar 

  10. Liu QL, Liu Q, Chen YR, Li YL, Su H, Liu QH, Li GQ. Ir nanoclusters confined within hollow MIL-101(Fe) for selective hydrogenation of α,β-unsaturated aldehyde. Chin Chem Lett. 2022;33(1):374. https://doi.org/10.1016/j.cclet.2021.06.047.

    Article  CAS  Google Scholar 

  11. Xin HY, Li MN, Chen L, Zhao C, Wu P, Li XH. Lanthanide oxide supported Ni nanoparticles for the selective hydrogenation of cinnamaldehyde. Catal Sci Technol. 2023;13(5):1488. https://doi.org/10.1039/d2cy01868c.

    Article  CAS  Google Scholar 

  12. Zhao JJ, Malgras V, Na J, Liang R, Cai Y, Kang YQ, Alshehri AA, Alzahrani KA, Alghamdi YG, Asahi T, Zhang DQ, Jiang B, Li HX, Yamauchi Y. Magnetically induced synthesis of mesoporous amorphous CoB nanochains for efficient selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Chem Eng J. 2020;398:125564. https://doi.org/10.1016/j.cej.2020.125564.

    Article  CAS  Google Scholar 

  13. Maity P, Yamazoe S, Tsukuda T. Dendrimer-encapsulated copper cluster as a chemoselective and regenerable hydrogenation catalyst. ACS Catal. 2013;3(2):182. https://doi.org/10.1021/cs3007318.

    Article  CAS  Google Scholar 

  14. Zhao WM, Shen JD, Xu XJ, He WX, Liu L, Chen ZH, Liu J. Functional catalysts for polysulfide conversion in Li-S batteries: from micro/nanoscale to single atom. Rare Met. 2022;41(4):1080. https://doi.org/10.1007/s12598-021-01865-3.

    Article  CAS  Google Scholar 

  15. Liu W, Feng HS, Yang YS, Niu YM, Wang L, Yin P, Hong S, Zhang BS, Zhang X, Wei M. Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nat Commun. 2022;13(1):3188. https://doi.org/10.1038/s41467-022-30536-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi Q, Wang LM, Ji YJ, Wang LG, Su FB, Bai S. Recent advances in synthesis of single-atom metal catalysts and their electrochemical applications. Chin J Rare Met. 2023;47(8):1132. https://doi.org/10.13373/j.cnki.cjrm.XY20030003

    Article  Google Scholar 

  17. Iqbal MS, Yao ZB, Ruan YK, Iftikhar R, Hao LD, Robertson AW, Imran SM, Sun ZY. Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Met. 2023;42(4):1075. https://doi.org/10.1007/s12598-022-02215-7.

  18. Sun GD, Zhao ZJ, Mu RT, Zha SJ, Li LL, Chen S, Zang KT, Luo J, Li ZL, Purdy SC, Kropf AJ, Miller JT, Zeng L, Gong JL. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat Commun. 2018;9(1):4454. https://doi.org/10.1038/s41467-018-06967-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu JB, Gong HS, Ye GL, Fei HL. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41(5):1703. https://doi.org/10.1007/s12598-021-01904-z.

    Article  CAS  Google Scholar 

  20. Mondelli C, Gozaydin G, Yan N, Perez-Ramirez J. Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem Soc Rev. 2020;49(12):3764. https://doi.org/10.1039/d0cs00130a.

    Article  CAS  PubMed  Google Scholar 

  21. Islam MJ, Mesa MG, Osatiashtiani A, Manayil JC, Isaacs MA, Taylor MJ, Tsatsos S, Kyriakou G. PdCu single atom alloys supported on alumina for the selective hydrogenation of furfural. Appl Catal B-Environ. 2021;299:120652. https://doi.org/10.1016/j.apcatb.2021.120652.

    Article  CAS  Google Scholar 

  22. Aich P, Wei HJ, Basan B, Kropf AJ, Schweitzer NM, Marshall CL, Miller JT, Meyer R. Single-atom alloy Pd–Ag catalyst for selective hydrogenation of acrolein. J Phys Chem C. 2015;119(32):18140. https://doi.org/10.1021/acs.jpcc.5b01357.

    Article  CAS  Google Scholar 

  23. Gong WB, Han MM, Chen C, Lin Y, Wang GZ, Zhang HM, Zhao HJ. CoOx@Co nanoparticle-based catalyst for efficient selective transfer hydrogenation of α,β-unsaturated aldehydes. Chem Cat Chem. 2020;12(4):1019. https://doi.org/10.1002/cctc.201901996.

    Article  CAS  Google Scholar 

  24. Gan T, Liu YF, He Q, Zhang H, He XH, Ji HB. Facile synthesis of kilogram-scale Co-alloyed Pt single-atom catalysts via ball milling for hydrodeoxygenation of 5-hydroxymethylfurfural. ACS Sustain Chem Eng. 2020;8(23):8692. https://doi.org/10.1021/acssuschemeng.0c02065.

    Article  CAS  Google Scholar 

  25. Zu YH, Yang PP, Wang JJ, Liu XH, Ren JW, Lu GZ, Wang YQ. Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Appl Catal B Environ. 2014;146:244. https://doi.org/10.1016/j.apcatb.2013.04.026.

    Article  CAS  Google Scholar 

  26. Wei ZJ, Zhu XM, Liu XS, Xu HQ, Li XH, Hou YX, Liu YX. Pt-Re/rGO bimetallic catalyst for highly selective hydrogenation of cinnamaldehyde to cinnamylalcohol. Chin J Chem Eng. 2019;27(2):369. https://doi.org/10.1016/j.cjche.2018.04.022.

    Article  CAS  Google Scholar 

  27. Xin HY, Zhang WB, Xiao XX, Chen L, Wu P, Li XH. Selective hydrogenation of cinnamaldehyde with NixFe1-xAl2O4+δ composite oxides supported Pt catalysts: C=O versus C=C selectivity switch by varying the Ni/Fe molar ratios. J Catal. 2021;393:126. https://doi.org/10.1016/j.jcat.2020.11.036.

    Article  CAS  Google Scholar 

  28. Jacobs G, Das TK, Patterson PM, Li JL, Sanchez L, Davis BH. Fischer-Tropsch synthesis XAFS: XAFS studies of the effect of water on a Pt-promoted Co/Al2O3 catalyst. Appl Catal A Gen. 2003;247(2):335. https://doi.org/10.1016/S0926-860X(03)00107-8.

    Article  CAS  Google Scholar 

  29. Silva DO, Luza L, Gual A, Baptista DL, Bernardi F, Zapata MJM, Morais J, Dupont J. Straightforward synthesis of bimetallic Co/Pt nanoparticles in ionic liquid: atomic rearrangement driven by reduction–sulfidation processes and Fischer–Tropsch catalysis. Nanoscale. 2014;6(15):9085. https://doi.org/10.1039/c4nr02018a.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng RY, Porosoff MD, Weiner JL, Lu SL, Zhu YX, Chen JG. Controlling hydrogenation of C=O and C=C bonds in cinnamaldehyde using silica supported Co-Pt and Cu-Pt bimetallic catalysts. Appl Catal A Gen. 2012;419:126. https://doi.org/10.1016/j.apcata.2012.01.019.

    Article  CAS  Google Scholar 

  31. Zhang W, Wang HZ, Jiang JW, Sui ZJ, Zhu Y, Chen D, Zhou XG. Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles. ACS Catal. 2020;10(21):12932. https://doi.org/10.1021/acscatal.0c03286.

    Article  CAS  Google Scholar 

  32. Zhang H, Zhang XC, Sun QD, He Q, Ji HB, He XH. Boosting hydrogenation properties of Pt single-atom catalysts via tailoring the electronic structures by coordination number regulation. Chem Eng J. 2023;455:140808. https://doi.org/10.1016/j.cej.2022.140808.

    Article  CAS  Google Scholar 

  33. Cheng X, Wang YS, Lu Y, Zheng LR, Sun SR, Li HY, Chen G, Zhang JJ. Single-atom alloy with Pt-Co dual sites as an efficient electrocatalyst for oxygen reduction reaction. Appl Catal B Environ. 2022;306:121112. https://doi.org/10.1016/j.apcatb.2022.121112.

    Article  CAS  Google Scholar 

  34. Zheng TT, Liu CX, Guo CX, Zhang ML, Li X, Jiang Q, Xue WQ, Li HL, Li AW, Pao C-W, Xiao JP, Xia C, Zeng J. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat Nanotechnol. 2021;16(12):1386. https://doi.org/10.1038/s41565-021-00974-5.

    Article  CAS  PubMed  Google Scholar 

  35. Ji KY, Xu M, Xu SM, Wang Y, Ge RX, Hu XY, Sun XM, Duan HH. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst. Angew Chem Int Ed. 2022;61(37):202209849. https://doi.org/10.1002/anie.202209849.

    Article  CAS  Google Scholar 

  36. Wang HW, Luo QQ, Liu W, Lin Y, Guan QQ, Zheng XS, Pan HB, Zhu JF, Sun ZH, Wei SQ, Yang JL, Lu JL. Quasi Pd1Ni single-atom surface alloy catalyst enables hydrogenation of nitriles to secondary amines. Nat Commun. 2019;10(1):4998. https://doi.org/10.1038/s41467-019-12993-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Z, He T, Matsumura D, Miao S, Wu AA, Liu L, Wu GT, Chen P. Atomically dispersed Pt on the surface of Ni particles: synthesis and catalytic function in hydrogen generation from aqueous ammonia–borane. ACS Catal. 2017;7(10):6762. https://doi.org/10.1021/acscatal.7b01790.

    Article  CAS  Google Scholar 

  38. Wang H, Zhou W, Liu JX, Si R, Sun G, Zhong MQ, Su HY, Zhao HB, Rodriguez JA, Pennycook SJ, Idrobo JC, Li WX, Kou Y, Ma D. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer–Tropsch synthesis. J Am Chem Soc. 2013;135(10):4149. https://doi.org/10.1021/ja400771a.

    Article  CAS  PubMed  Google Scholar 

  39. Li Z, Niu WH, Yang ZZ, Zaman N, Samarakoon W, Wang MY, Kara A, Lucero M, Vyas MV, Cao H, Zhou H, Sterbinsky GE, Feng ZX, Du YG, Yang Y. Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries. Energy Environ Sci. 2020;13(3):884. https://doi.org/10.1039/c9ee02657f.

    Article  CAS  Google Scholar 

  40. Yang WW, Cheng P, Li Z, Lin YX, Li MY, Zi JZ, Shi HH, Li GS, Lian ZC, Li HX. Tuning the cobalt–platinum alloy regulating single-atom platinum for highly efficient hydrogen evolution reaction. Adv Funct Mater. 2022;32(39):2205920. https://doi.org/10.1002/adfm.202205920.

    Article  CAS  Google Scholar 

  41. Xin HY, Xue YJ, Zhang WB, Wu P, Li XH. CoxFe1-xAl2O4+δ composite oxides supported Pt nanoparticles as efficient and recyclable catalysts for the liquid-phase selective hydrogenation of cinnamaldehyde. J Catal. 2019;380:254. https://doi.org/10.1016/j.jcat.2019.09.042.

    Article  CAS  Google Scholar 

  42. Xue YJ, Xin HY, Xie WH, Wu P, Li XH. Pt nanoparticles supported on YCoxFe1−xO3 perovskite oxides: highly efficient catalysts for liquid-phase hydrogenation of cinnamaldehyde. Chem Commun. 2019;55(23):3363. https://doi.org/10.1039/C9CC00318E.

    Article  CAS  Google Scholar 

  43. Zhang LL, Chen X, Peng ZJ, Liang Ch. Chemoselective hydrogenation of cinnamaldehyde over MOFs-derived M2Si@ C (M= Fe Co, Ni) silicides catalysts. Mol Catal. 2018;449:14. https://doi.org/10.1016/j.mcat.2018.02.006.

    Article  CAS  Google Scholar 

  44. Zhao MT, Yuan K, Wang Y, Li GD, Guo J, Gu L, Hu WP, Zhao HJ, Tang ZY. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature. 2016;539:76. https://doi.org/10.1038/nature19763.

    Article  CAS  PubMed  Google Scholar 

  45. Lan HS, Qin ZZ, Shi SL, Zhang XC, He XH, Ji HB. Fe2O3 supported Pt single atom catalysts for the selective hydrogenation of cinnamaldehyde. Dalton Trans. 2022;51(40):15227. https://doi.org/10.1039/d2dt02075k.

    Article  CAS  PubMed  Google Scholar 

  46. Wang HP, Bai SX, Pi YC, Shao Q, Tan YM, Huang XQ. A strongly coupled ultrasmall Pt3Co nanoparticle-ultrathin Co(OH)2 nanosheet architecture enhances selective hydrogenation of α,β-unsaturated aldehydes. ACS Catal. 2019;9(1):154. https://doi.org/10.1021/acscatal.8b03471.

    Article  CAS  Google Scholar 

  47. Zhang S, Xia ZM, Zhang MK, Zou Y, Shen HD, Li JY, Chen X, Qu YQ. Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Appl Catal B Environ. 2021;297:120418. https://doi.org/10.1016/j.apcatb.2021.120418.

    Article  CAS  Google Scholar 

  48. Luo QQ, Wang T, Beller M, Jiao HJ. Acrolein hydrogenation on Ni(111). J Phys Chem C. 2013;117(24):12715. https://doi.org/10.1021/jp403972b.

    Article  CAS  Google Scholar 

  49. Lv Y, Han MM, Gong WB, Wang DD, Chen C, Wang GZ, Zhang HM, Zhao HJ. Fe-Co alloyed nanoparticles catalyzing efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water. Angew Chem Int Ed. 2020;59(52):23521. https://doi.org/10.1002/anie.202009913.

    Article  CAS  Google Scholar 

  50. Liu QL, Wu JY, Kang JW, Liu Q, Liao PS, Li GQ. Inert metal induces the modulation of unsaturated aldehyde absorption mode for enhanced selective hydrogenation. Nanoscale. 2022;14(41):15462. https://doi.org/10.1039/d2nr03608h.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National key Research and Development Program Nanotechnology Specific Project (No. 2020YFA0210900), the Science and Technology Key Project of Guangdong Province, China (No. 2020B010188002), Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2022B1515020035), Guangdong Provincial Key R&D Programme (No. 2019B110206002), the National Natural Science Foundation of China (Nos. 22078371, 21938001 and 21961160741), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (No. 2017BT01C102), the NSF of Guangdong Province (No. 2020A1515011141), the Science and Technology Project of Guangzhou City, China (No. 202102020461) and Special funding for “Guangxi Bagui Scholars”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Hui He or Hong-Bing Ji.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3861 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, HS., Yang, YD., Sun, QD. et al. Controlling hydrogenation of C=C and C=O bonds in cinnamaldehyde using Pt1/Ni and Pt1/Co single-atom alloy catalysts. Rare Met. 43, 2859–2868 (2024). https://doi.org/10.1007/s12598-024-02672-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02672-2

Navigation