Skip to main content
Log in

Texture and Se vacancy optimization induces high thermoelectric performance in Bi2Se3 flexible thin films

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Bi2Se3-based flexible thin film with high thermoelectric performance is promising for the waste heat recovery technology. In this work, a novel post-selenization method is employed to prepare n-type Bi2Se3 flexible thin films with highly textured structure. The strengthened texture and Se vacancy optimization can be simultaneously achieved by optimizing the selenization temperature. The highly oriented texture leads to the increased carrier mobility and results in a high electric conductivity of ~ 290.47 S·cm−1 at 623 K. Correspondingly, a high Seebeck coefficient (> 110 μW·K−1) is obtained due to the reduced carrier concentration, induced by optimizing vacancy engineering. Consequently, a high power factor of 3.49 μW·cm−1·K−2 at 623 K has been achieved in as-prepared highly-bendable Bi2Se3 flexible thin films selenized at 783 K. This study introduces an effective post-selenization method to tune the texture structure and vacancies of Bi2Se3 flexible thin films, and correspondingly achieves high thermoelectric performance.

Graphical Abstract

摘要

Bi2Se3基柔性薄膜因其具有高热电性能而可用于废热回收技术。本研究采用后硒化法,制备出具有高择优取向的n型Bi2Se3柔性薄膜。通过优化硒化温度,实现了增强织构强度和Se空位的优化。高择优取向微结构显著提高Bi2Se3柔性薄膜的载流子迁移率,在623 K下获得了高达~290.47 S·cm−1的电导率。同时,通过引入空位工程降低了柔性薄膜载流子浓度,实现Seebeck系数高于110 μW·K−1。最终有效提升薄膜热电性能,在623 K时Bi2Se3柔性薄膜功率因子达到3.49 μW·cm−1·K−2。以上研究为新型Bi2Se3高性能热电薄膜材料设计和性能优化提供了新思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hong S, Gu Y, Seo JK, Wang J, Liu P, Meng YS, Xu S, Chen R. Wearable thermoelectrics for personalized thermoregulation. Sci Adv. 2019;5(5):eaa0536. https://doi.org/10.1126/sciadv.aaw0536.

    Article  CAS  Google Scholar 

  2. Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat Nanotechnol. 2009;4:235. https://doi.org/10.1038/nnano.2008.417.

    Article  CAS  PubMed  Google Scholar 

  3. Sun W, Liu WD, Liu Q, Chen ZG. Advances in thermoelectric devices for localized cooling. Chem Eng J. 2022;450: 138389. https://doi.org/10.1016/j.cej.2022.138389.

    Article  CAS  Google Scholar 

  4. Zheng ZH, Shi XL, Ao DW, Liu WD, Li M, Kou LZ, Chen YX, Li F, Wei M, Liang GX, Fan P, Lu GQ, Chen ZG. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat Sus. 2023;6:180. https://doi.org/10.1038/s41893-022-01003-6.

    Article  Google Scholar 

  5. Guo FH, Hao LZ, Yu WZ, Li SQ, Liu GC, Hao JY, Liu YJ. High-performance Si/VO2-nanorod heterojunction photodetector based on photothermoelectric effect for detecting human radiation. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02497-5.

    Article  Google Scholar 

  6. Hu QX, Liu WD, Zhang L, Sun W, Gao H, Shi XL, Yang YL, Liu Q, Chen ZG. SWCNTs/Ag2Se film with superior bending resistance and enhanced thermoelectric performance via in situ compositing. Chem Eng J. 2023;457:141024. https://doi.org/10.1016/j.cej.2022.141024.

    Article  CAS  Google Scholar 

  7. Li L, Liu WD, Liu Q, Chen ZG. Multifunctional wearable thermoelectrics for personal thermal management. Adv Funct Mater. 2022;32(22):2200548. https://doi.org/10.1002/adfm.202200548.

    Article  CAS  Google Scholar 

  8. Li XY, Song GH, Li GP, Liu Y, Hu F. Advances in Mg3X2(X=Sb, Bi)-based thermoelectric materials. Chin J Rare Met. 2022;46(12):1621. https://doi.org/10.13373/j.cnki.cjrm.XY20090032.

    Article  Google Scholar 

  9. Ao DW, Liu WD, Chen YX, Wei M, Jabar B, Li F, Shi XL, Zheng ZH, Liang GX, Zhang XH, Fan P, Chen ZG. Novel thermal diffusion temperature engineering leading to high thermoelectric performance in Bi2Te3-based flexible thin-films. Adv Sci. 2022;9(5):e2103547. https://doi.org/10.1002/advs.202103547.

    Article  CAS  Google Scholar 

  10. Ao DW, Liu WD, Zheng ZH, Shi XL, Wei M, Zhong YM, Li M, Liang GX, Fan P, Chen ZG. Assembly-free fabrication of high-performance flexible inorganic thin-film thermoelectric device prepared by a thermal diffusion. Adv Energy Mater. 2022;12(42):2202731. https://doi.org/10.1002/aenm.202202731.

    Article  CAS  Google Scholar 

  11. Wang DZ, Liu WD, Li M, Zheng K, Hu H, Yin LC, Wang Y, Zhu H, Shi XL, Yang X, Liu Q, Chen ZG. Hierarchical architectural structures induce high performance in n-type GeTe-based thermoelectrics. Adv Funct Mater. 2023;33(14):2213040. https://doi.org/10.1002/adfm.202213040.

    Article  CAS  Google Scholar 

  12. Shi XL, Zou J, Chen ZG. Advanced thermoelectric design: from materials and structures to devices. Chem Rev. 2020;120(15):7399. https://doi.org/10.1021/acs.chemrev.0c00026.

    Article  CAS  PubMed  Google Scholar 

  13. Lee KH, Si K, Lim JC, Cho JY, Yang H, Kim HS. Approach to determine the density-of-states effective mass with carrier concentration-dependent Seebeck coefficient. Adv Funct Mater. 2022;32(33):2203852. https://doi.org/10.1002/adfm.202203852.

    Article  CAS  Google Scholar 

  14. Wang SN, Lu HC, Li DJ, Jin Y, Li XY, Yan Y, Gu K, Qiu YT, Zhao LD. Realizing p-type performance in low-thermal-conductivity BiSbSe3 via lead doping. Rare Met. 2023;42(11):3601. https://doi.org/10.1007/s12598-023-02339-4.

    Article  CAS  Google Scholar 

  15. Zheng ZH, Luo JT, Li F, Liang G-X, Fan P. Enhanced thermoelectric performance of p-type Sb2Te3 thin films through organic-inorganic hybridization on flexible substrate. Curr Appl Phys. 2019;19(4):470. https://doi.org/10.1016/j.cap.2019.01.019.

    Article  Google Scholar 

  16. Liu WD, Yu Y, Dargusch M, Liu QF, Chen ZG. Carbon allotrope hybrids advance thermoelectric development and applications. Renew Sust Energy Rev. 2021;141:110800. https://doi.org/10.1016/j.rser.2021.110800.

    Article  CAS  Google Scholar 

  17. Wei M, Shi XL, Zheng ZH, Li F, Liu WD, Xiang LP, Xie YS, Chen YX, Duan JY, Ma HL, Liang GX, Zhang XH, Fan P, Chen ZG. Directional thermal diffusion realizing inorganic Sb2Te3/Te hybrid thin films with high thermoelectric performance and flexibility. Adv Funct Mater. 2022;32(45):2207903. https://doi.org/10.1002/adfm.202207903.

    Article  CAS  Google Scholar 

  18. Jiang C, Wei P, Ding Y, Cai K, Tong L, Gao Q, Lu Y, Zhao W, Chen S. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting. Nano Energy. 2021;80:105488. https://doi.org/10.1016/j.nanoen.2020.105488.

    Article  CAS  Google Scholar 

  19. Liu WD, Yang L, Chen ZG. Cu2Se thermoelectrics: property, methodology, and device. Nano Today. 2020;35:100938. https://doi.org/10.1016/j.nantod.2020.100938.

    Article  CAS  Google Scholar 

  20. Yin LC, Liu WD, Li M, Wang DZ, Wu H, Wang Y, Zhang L, Shi XL, Liu Q, Chen ZG. Interstitial Cu: an effective strategy for high carrier mobility and high thermoelectric performance in GeTe. Adv Funct Mater. 2023;33(25):2301750. https://doi.org/10.1002/adfm.202301750.

    Article  CAS  Google Scholar 

  21. Wang DZ, Liu WD, Li M, Yin LC, Gao H, Sun Q, Wu H, Wang Y, Shi XL, Yang X, Liu Q, Chen ZG. Simultaneously achieving high ZT and mechanical hardness in highly alloyed GeTe with symmetric nanodomains. Chem Eng J. 2022;441:136131. https://doi.org/10.1016/j.cej.2022.136131.

    Article  CAS  Google Scholar 

  22. Huang XL, Ao DW, Chen TB, Chen YX, Li F, Chen S, Liang GX, Zhang XH, Zheng ZH, Fan P. High-performance copper selenide thermoelectric thin films for flexible thermoelectric application. Mater Today Energy. 2021;21:100743. https://doi.org/10.1016/j.mtener.2021.100743.

    Article  CAS  Google Scholar 

  23. Lu Y, Ding Y, Qiu Y, Cai K, Yao Q, Song H, Tong L, He J, Chen L. Good performance and flexible PEDOT:PSS/Cu2Se nanowire thermoelectric composite films. ACS Appl Mater Interfaces. 2019;11(13):12819. https://doi.org/10.1021/acsami.9b01718.

    Article  CAS  PubMed  Google Scholar 

  24. Adam AM, Diab AK, Ataalla M, Alotaibi MF, Alharbi AN, Elsehly EM. Optimized thermoelectric performance in thin (Bi2Se3)1–x(Bi2Te3)x alloyed films. J Alloys Compd. 2022;898:162888. https://doi.org/10.1016/j.jallcom.2021.162888.

    Article  CAS  Google Scholar 

  25. Xiong Y, Zhou G, Lai NC, Wang X, Lu YC, Prezhdo OV, Xu D. Chemically switchable n-type and p-type conduction in bismuth selenide nanoribbons for thermoelectric energy harvesting. ACS Nano. 2021;15(2):2791. https://doi.org/10.1021/acsnano.0c08685.

    Article  CAS  PubMed  Google Scholar 

  26. Ju H, Park D, Kim J. Solution-processable flexible thermoelectric composite films based on conductive polymer/SnSe0.8S0.2 nanosheets/carbon nanotubes for wearable electronic applications. J Mater Chem A. 2018;6:5627. https://doi.org/10.1039/C7TA11285H.

    Article  CAS  Google Scholar 

  27. Ju H, Kim J. Chemically exfoliated SnSe nanosheets and their SnSe/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano. 2016;10(6):5730. https://doi.org/10.1021/acsnano.5b07355.

    Article  CAS  PubMed  Google Scholar 

  28. Zheng ZH, Zhang DL, Jabar B, Chen TB, Nisar M, Chen YF, Li F, Chen S, Liang GX, Zhang XH, Fan P, Chen YX. Realizing high thermoelectric performance in highly (0l0)-textured flexible Cu2Se thin film for wearable energy harvesting. Mate Today Phys. 2022;24:100659. https://doi.org/10.1016/j.mtphys.2022.100659.

    Article  CAS  Google Scholar 

  29. Le PH, Liao CN, Luo CW, Lin JY, Leu J. Thermoelectric properties of bismuth-selenide films with controlled morphology and texture grown using pulsed laser deposition. Appl Surf Sci. 2013;285:657. https://doi.org/10.1016/j.apsusc.2013.08.107.

    Article  CAS  Google Scholar 

  30. Shen H, Lee S, Kang JG, Eom TY, Lee H, Han S. Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films. Appl Surf Sci. 2018;429:115. https://doi.org/10.1016/j.apsusc.2017.09.037.

    Article  CAS  Google Scholar 

  31. Li D, Gong Y, Chen Y, Lin J, Khan Q, Zhang Y, Li Y, Zhang H, Xie H. Recent progress of two-dimensional thermoelectric materials. Nanomicro Lett. 2020;12:36. https://doi.org/10.1007/s40820-020-0374-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ahmed R, Rosul MG, Xu Y, Zebarjadi M, Zangari G. Morphology and seebeck coefficients of electrodeposited Bi2Se3 films grown onto Au (111)/Si substrates. Electrochim Acta. 2021;368:137554. https://doi.org/10.1016/j.electacta.2020.137554.

    Article  CAS  Google Scholar 

  33. Newbrook DW, Richards SP, Greenacre VK, Hector AL, Levason W, Reid G, de Groot CH, Huang R. Improved thermoelectric performance of Bi2Se3 alloyed Bi2Te3 thin films via low pressure chemical vapour deposition. J Alloys Compd. 2020;848:156523. https://doi.org/10.1016/j.jallcom.2020.156523.

    Article  CAS  Google Scholar 

  34. Dun C, Hewitt CA, Huang H, Xu J, Zhou C, Huang W, Cui Y, Zhou W, Jiang Q, Carroll DL. Flexible n-type thermoelectric films based on Cu-doped Bi2Se3 nanoplate and polyvinylidene fluoride composite with decoupled seebeck coefficient and electrical conductivity. Nano Energy. 2015;18:306. https://doi.org/10.1016/j.nanoen.2015.10.012.

    Article  CAS  Google Scholar 

  35. Kadel K, LK, WZ Li, Jian Yu Huang, Paula P Provencio. Synthesis and thermoelectric properties of Bi2Se3 nanostructures. Nanoscale Res Lett. 2011;6:57. https://doi.org/10.1007/s11671-010-9795-7.

    Article  CAS  PubMed  Google Scholar 

  36. Bai T, Li C, Liang D, Li F, Jin D, Shi Z, Feng S. Synthesis of various metal selenide nanostructures using the novel selenium precursor 1, 5-bis(3-methylimidazole-2-selone) pentane. CrystEngComm. 2013;15:6483. https://doi.org/10.1039/C3CE40491A.

    Article  CAS  Google Scholar 

  37. Min Y, Roh JW, Yang H, Park M, Kim SI, Hwang S, Lee SM, Lee KH, Jeong U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv Mater. 2013;25(10):1425. https://doi.org/10.1002/adma.201203764.

    Article  CAS  PubMed  Google Scholar 

  38. Liu WD, Shi XL, Hong M, Yang L, Raza M, Chen ZG, Zou J. Ag doping induced abnormal lattice thermal conductivity in Cu2Se. J Mater Chem C. 2018;6:13225. https://doi.org/10.1039/C8TC04129F.

    Article  CAS  Google Scholar 

  39. Ivanov O, Yaprintsev M. Variable-range hopping conductivity in Lu-doped Bi2Te3. Solid State Sci. 2018;76:111. https://doi.org/10.1016/j.solidstatesciences.2017.12.012.

    Article  CAS  Google Scholar 

  40. Wang YG, Liebig C, Xu X, Venkatasubramanian R. Acoustic phonon scattering in Bi2Te3/Sb2Te3 superlattices. Appl Phys Lett. 2010;97:083103. https://doi.org/10.1063/1.3483767.

    Article  CAS  Google Scholar 

  41. Tan M, Liu WD, Shi XL, Sun Q, Chen ZG. Minimization of the electrical contact resistance in thin-film thermoelectric device. Appl Phys Rev. 2023;10:021404. https://doi.org/10.1063/5.0141075.

    Article  CAS  Google Scholar 

  42. Niu J, Chen T, Liang G, Ma H, Zhang X, Fan P, Zheng ZH. In-situ growth of high room temperature thermoelectric performance Ag2Se thin films. Mater Lett. 2022;312:131662. https://doi.org/10.1016/j.matlet.2022.131662.

    Article  CAS  Google Scholar 

  43. Zheng SK, Xiao SJ, Peng KL, Pan Y, Yang XL, Lu X, Han G, Zhang B, Zhou ZZ, Wang GY, Zhou XY. Symmetry-guaranteed high carrier mobility in quasi-2D thermoelectric semiconductors. Adv Mater. 2023;35(10):2210380. https://doi.org/10.1002/adma.202210380.

    Article  CAS  Google Scholar 

  44. Liu WD, Yin LC, Li L, Yang Q, Wang DZ, Li M, Shi XL, Liu QF, Bai Y, Gentle I, Wang LZ, Chen ZG. Grain boundary re-crystallization and sub-nano regions leading to high plateau figure of merit for Bi2Te3 nanoflakes. Energy Environ Sci. 2023. https://doi.org/10.1039/D3EE02370B.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fan LZ, Peng KL, Zhou ZZ, Yan YC, Ran C, Wang HH, Han G, Zhang B, Lu X, Wang GY, Zhou XY. Exceptional thermoelectric performance enabled by high carrier mobility and intrinsically low lattice thermal conductivity in phosphide Cd3P2. Chem Mater. 2022;34(4):1620. https://doi.org/10.1021/acs.chemmater.1c03619.

    Article  CAS  Google Scholar 

  46. Zeng XL, Ren L, Xie JL, Mao DS, Wang MM, Zeng XL, Du GP, Sun R, Xu JB, Wong CP. Room-temperature welding of silver telluride nanowires for high-performance thermoelectric film. ACS Appl Mater Interfaces. 2019;11(41):37892. https://doi.org/10.1021/acsami.9b14854.

    Article  CAS  PubMed  Google Scholar 

  47. Wang WT, Zheng ZH, Li F, Li C, Fan P, Luo JT, Li B. Synthesis process and thermoelectric properties of n-type tin selenide thin films. J Alloys Compd. 2018;763:960. https://doi.org/10.1016/j.jallcom.2018.06.021.

    Article  CAS  Google Scholar 

  48. Heo SH, Jo S, Kim HS, Choi G, Song JY, Kang JY, Park NJ, Ban HW, Kim F, Jeong H, Jung J, Lee WB, Shin H, Son JS. Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films. Nat Commun. 2019;10:864. https://doi.org/10.1038/s41467-019-08883-x.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Paul B, Lu J, Eklund P. Nanostructural tailoring to induce flexibility in thermoelectric Ca3Co4O9 thin films. ACS Appl Mater Interfaces. 2017;9(30):25308. https://doi.org/10.1021/acsami.7b06301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao WY, Fan SF, Xiao N, Liu DY, Tay YY, Yu C, Sim D, Hng HH, Zhang Q, Boey F, Ma J, Zhao XB, Zhang H, Yan QY. Flexible carbon nanotube papers with improved thermoelectric properties. Energy Environ Sci. 2012;5:5364. https://doi.org/10.1039/C1EE01931G.

    Article  CAS  Google Scholar 

  51. Zheng ZH, Shi XL, Ao DW, Liu WD, Chen YX, Li F, Chen S, Tian XQ, Li XR, Duan JY, Ma HL, Zhang XH, Liang GX, Fan P, Chen ZG. Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films. Nano Energy. 2021;81:105683. https://doi.org/10.1016/j.nanoen.2020.105683.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundations of Shandong Province (No. ZR2023ME001), the China Postdoctoral Science Foundation (No. 2023M732609), ShangRao City of Jiangxi Province (China) (No. 2022A006), and Doctoral Research Initiation Fund of Weifang University (No. 2023BS01). We would like to thank Editage (www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Jie Gu or Zhuang-Hao Zheng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2199 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, DW., Liu, WD., Chen, YX. et al. Texture and Se vacancy optimization induces high thermoelectric performance in Bi2Se3 flexible thin films. Rare Met. 43, 2796–2804 (2024). https://doi.org/10.1007/s12598-024-02643-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02643-7

Keywords

Navigation