Skip to main content
Log in

MOF and its derivative materials modified lithium–sulfur battery separator: a new means to improve performance

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In recent years, lithium–sulfur batteries (LSBs) are considered as one of the most promising new generation energies with the advantages of high theoretical specific capacity of sulfur (1675 mAh·g−1), abundant sulfur resources, and environmental friendliness storage technologies, and they are receiving wide attention from the industry. However, the problems of the shuttle effect and lithium dendrite growth in LSBs have limited their practical application, so there is a need to find ways to solve these problems. It is an excellent choice to use novel materials to modify battery materials. Among those novel materials, the metal–organic framework (MOF) has the properties of regular pores and controllable structure. When applied as a positive electrode and diaphragm, it can restrain the shuttle effect and lithium dendrite growth, especially since it shows excellent performance in diaphragm modification. Therefore, various design strategies and synthesis methods of MOF-modified separators are reviewed in this paper, and the applications of MOF in LSBs separators in different forms are introduced, including the composite of MOF and carbon-based materials, the compounding of MOF and polymer, self-carbonization to form MOF-derived materials. At the same time, different characterization techniques are systematically reviewed to obtain the physical and chemical properties of MOF particles and the working mechanism of MOF-modified diaphragm, which provides a basis for further research in this field. Finally, some future research trends and directions are put forward to fully tap the future commercial potential of MOF-modified diaphragm in LSBs.

Graphical abstract

摘要

近年来, 锂硫电池 (LSBs) 以硫的理论比容量高(1675 mAh·g−1)、硫资源丰富、环保等优点被认为是最有发展前景的新一代能源存储技术之一, 受到了业界的广泛关注。然而, 锂硫电池的穿梭效应和锂枝晶生长问题限制了其实际应用, 因此有必要寻找解决这些问题的方法。利用新型材料对电池材料进行改性是一种很好的选择。在这些新型材料中, 金属有机骨架(MOF)具有孔道规整、结构可控等特点。当用作正极和隔膜时, 它可以抑制穿梭效应和锂枝晶的生长, 特别是因为它在隔膜改性方面表现出了良好的性能。为此, 本文综述了MOF改性改性隔膜的各种设计策略和合成方法, 并介绍了MOF在锂硫电池隔膜中不同形式的应用, 包括MOF与碳基材料的复合、MOF与聚合物的复合、碳化形成MOF衍生材料。同时, 对不同的表征技术进行了系统的综述, 获得了MOF颗粒的物理化学性质和MOF改性隔膜的工作机理, 为该领域的进一步研究提供了基础。最后提出了今后的研究趋势和方向, 以充分挖掘MOF改性隔膜在锂硫电池中的未来商业潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen S, Qiu L, Cheng HM. Carbon-based fibers for advanced electrochemical energy storage devices. Chem Rev. 2020;120(5):2811. https://doi.org/10.1021/acs.chemrev.9b00466.

    Article  CAS  PubMed  Google Scholar 

  2. Ren J, Ma ZS, Wang YD, Ou JR, Chen TQ, Zheng SY. Microcracks in nickel-rich layered cathodes: mechanism of generation and coping strategies. Chin J Rare Met. 2022,46(6):736. https://doi.org/10.13373/j.cnki.cjrm.XY21100029.

  3. Yin YX, Xin S, Guo YG, Wan LJ. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed. 2013;52(50):13186. https://doi.org/10.1002/anie.201304762.

    Article  CAS  Google Scholar 

  4. Armand M, Tarascon MJ. Building better batteries. Nature. 2008;451(7179):652. https://doi.org/10.1038/451652a.

    Article  CAS  PubMed  Google Scholar 

  5. Goodenough JB. Evolution of strategies for modern rechargeable batteries. Acc Chem Res. 2013;46(5):1053. https://doi.org/10.1021/ar2002705.

    Article  CAS  PubMed  Google Scholar 

  6. Danuta H, Juliusz U. Electric dry cells and storage batteries. US, US3043896. 1962.

  7. Tang TY, Zhang LG, Guo ZF, Gu XX. Development of cathode and anode materials in lithium sulfur batteries. Chin J Rare Met. 2022,46(7):954. https://doi.org/10.13373/j.cnki.cjrm.XY21070001.

  8. Bruce D, Haresh K, Jean-Marie T. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928. https://doi.org/10.1126/science.1212741.

  9. Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104(10):4271. https://doi.org/10.1021/cr020731c.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu Q, Xu HF, Shen K, Zhang YZ, Li B, Yang SB. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium-sulfur batteries. Rare Met. 2021;41(2):311. https://doi.org/10.1007/s12598-022-019890.

    Article  Google Scholar 

  11. Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev. 2016;45(20):5605. https://doi.org/10.1039/c5cs00410a.

    Article  CAS  PubMed  Google Scholar 

  12. Wang D, Zhao ZY, Wang P, Wang SM, Feng M. Synthesis of MOF-derived nitrogen-doped carbon microtubules via template self-consumption. Rare Met. 2022;41(8):2582. https://doi.org/10.1007/s12598-022-01987-2.

  13. Qiu Y, Yin XJ, Wang MX, Li M, Sun X, Jiang B, Zhou H, Tang DY, Zhang Y, Fan LS, Zhang NQ. Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li-S battery. Rare Met. 2021;40(11):3147. https://doi.org/10.1007/s12598-021-01750-z.

    Article  CAS  Google Scholar 

  14. Moon S, Jung YH, Jung WK, Jung DS, Choi JW, Kim DK. Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries. Adv Mater. 2013;25(45):6547. https://doi.org/10.1002/adma.201303166.

    Article  CAS  PubMed  Google Scholar 

  15. Shaibani M, Mirshekarloo MS, Singh R, Easton CD, Majumder M. Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Sci Adv. 2020;6(1):2757. https://doi.org/10.1126/sciadv.aay2757.

    Article  CAS  Google Scholar 

  16. Zhang Z, Fang Z, Xiang Y, Liu D, Foshan. Cellulose-based material in lithium-sulfur batteries: a review. Carbohydr. Polym. 2020;255(1):117469. https://doi.org/10.1016/j.carbpol.2020.117469.

  17. Zhu Q, Xu HF, Shen K, Zhang YZ, Li B, Yang SB. Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium-sulfur batteries. Rare Met. 2022;41(1):311. https://doi.org/10.1007/s12598-021-01839-5.

    Article  CAS  Google Scholar 

  18. Wang D, Zhao ZY, Wang P, Wang SM, Feng M. Synthesis of MOF-derived nitrogen-doped carbon microtubules via template self-consumption. Rare Met. 2022;4(8):2582. https://doi.org/10.1007/s12598-022-01987-2.

    Article  CAS  Google Scholar 

  19. Rauh RD. A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc. 1979;126(4):523. https://doi.org/10.1149/1.2129079.

    Article  CAS  Google Scholar 

  20. Bi CX, Hou LP, Li Z, Zhao M, Zhang XQ, Li BQ, Zhang Q, Huang JQ. Protecting lithium metal anodes in lithium-sulfur batteries: a review. Energy Mater Adv. 2023;4(0010):26925. https://doi.org/10.34133/energymatadv.0010.

  21. Hou LP, Li Z, Yao N, Bi CX, Li BQ, Chen X, Zhang XQ, Zhang Q. Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long-cycling lithium-sulfur batteries. Adv Mater. 2022;34(45):2205284. https://doi.org/10.1002/adma.202205284.

    Article  CAS  Google Scholar 

  22. Song YW, Shen L, Yao N, Li XY, Bi CX, Li Z, Zhou MY, Zhang XQ, Chen X, Li BQ, Huang JQ, Zhang Q. Cationic lithium polysulfides in lithium-sulfur batteries. Chem. 2022;8(11):3031. https://doi.org/10.1016/j.chempr.2022.07.004.

    Article  CAS  Google Scholar 

  23. Zhang XQ, Liu C, Gao Y, Zhang JM, Wang YQ. Research progress of sulfur/carbon composite cathode materials and the corresponding safe electrolytes for advanced Li-S batteries. NANO. 2020;15(05):2030002. https://doi.org/10.1142/s1793292020300029.

    Article  CAS  Google Scholar 

  24. Li Y, Guo S. Material design and structure optimization for rechargeable lithium-sulfur batteries. J Matter. 2021;4(4):1142. https://doi.org/10.1016/j.matt.2021.01.012.

    Article  CAS  Google Scholar 

  25. Yao LY, Hou LP, Song YW, Zhao M, Xie J, Li BQ, Zhang Q, Huang JQ, Zhang XQ. Recycling inactive lithium in lithium-sulfur batteries using organic polysulfide redox. J Mater Chem A. 2023;11(14):7441. https://doi.org/10.1039/D3TA00096F.

    Article  CAS  Google Scholar 

  26. Cheng Q, Chen ZX, Li XY, Hou LP, Bi CX, Zhang XQ, Huang JQ, Li BQ. Constructing a 700 Wh·kg-1-level rechargeable lithium-sulfur pouch cell. J Energy Chem. 2023;76:181. https://doi.org/10.1016/j.jechem.2022.09.029.

    Article  CAS  Google Scholar 

  27. Jiang FN, Yang SJ, Chen ZX, Liu H, Yuan H, Liu L, Huang JQ, Cheng XB, Zhang Q. Higher-order polysulfides induced thermal runaway for 1.0 Ah lithium sulfur pouch cells. Particuology. 2023;79:10. https://doi.org/10.1016/j.partic.2022.11.009.

  28. Jiang FN, Cheng XB, Yang SJ, Xie J, Yuan H, Liu L, Huang JQ, Zhang Q. Ther moresponsive electrolytes for safe lithium-metal batteries. Adv Mater. 2023;35(12):2209114. https://doi.org/10.1002/adma.202209114.

    Article  CAS  Google Scholar 

  29. Chen ZX, Hou LP, Bi CX, Cheng Q, Zhang XQ, Li BQ, Huang JQ. Failure analysis of high-energy-density lithium-sulfur pouch cells. Energy Stor Mater. 2022;53:315. https://doi.org/10.1016/j.ensm.2022.07.035.

    Article  Google Scholar 

  30. Ren W, Ma W, Zhang S, Tang B. Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Stor Mater. 2019;23:707. https://doi.org/10.1016/j.ensm.2019.02.022.

    Article  Google Scholar 

  31. Jiang Y, Liu HQ, Tan XH, Guo LM, Zhang JT, Liu SN. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries. ACS Appl Mater Interfaces. 2017;9(30):25239. https://doi.org/10.1021/acsami.7b04432.

    Article  CAS  PubMed  Google Scholar 

  32. Fu Y, Hu J, Wang Q, Lin DM, Li KK, Zhou LM. Thermally etched porous carbon cloth catalyzed by metal organic frameworks as sulfur hosts for lithium-sulfur batteries. Carbon. 2019;150:76. https://doi.org/10.1016/j.carbon.2019.05.008.

    Article  CAS  Google Scholar 

  33. Xiao FP, Yang XM, Wang HK, Xu J, Liu YL, Yu DYW. Covalent encapsulation of sulfur in a MOF-derived S, N-doped porous carbon host realized via the vapor-infiltration method results in enhanced sodium-sulfur battery performance. Adv Energy Mater. 2020;10(23):2000931. https://doi.org/10.1002/aenm.202000931.

    Article  CAS  Google Scholar 

  34. Cha E, Patel MD, Park J, Hwang J, Prasad V, Cho K. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat Nanotechnol. 2018;13:337. https://doi.org/10.1038/s41565-018-0061-y.

    Article  CAS  PubMed  Google Scholar 

  35. Cheng XB, Yan C, Huang JQ, Li P, Zhu L, Zhao LD. The gap between long lifespan Li-S coin and pouch cells: the importance of lithium metal anode protection. Energy Stor Mater. 2017;6:18. https://doi.org/10.1016/j.ensm.2016.09.003.

    Article  Google Scholar 

  36. Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han XG, Hu LB. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015;9(6):5884. https://doi.org/10.1021/acsnano.5b02166.

    Article  CAS  PubMed  Google Scholar 

  37. Lu H, Zhu Y, Yuan Y, He L, Zheng B, Zheng XZ. LiFSI as a functional additive of the fluorinated electrolyte for rechargeable Li-S batteries. J Mater Sci Mater Electron. 2021;32(5):5898. https://doi.org/10.1007/s10854-021-05310-0.

    Article  CAS  Google Scholar 

  38. Zhang SS. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta. 2012;70:344. https://doi.org/10.1016/j.electacta.2012.03.081.

    Article  CAS  Google Scholar 

  39. Li M, Wang C, Miao LX, Xiang JW, Wang TY, Yuan K. A separator-based lithium polysulfide recirculator for high-loading and high-performance Li-S batteries. J Mater Chem A. 2018;6(14):5862. https://doi.org/10.1039/c8ta00459e.

    Article  CAS  Google Scholar 

  40. Fan Y, Yang Z, Hua WX, Liu D, Tao T, Rahman MM. Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv Energy Mater. 2017;7(13):1602380. https://doi.org/10.1002/aenm.201602380.

    Article  CAS  Google Scholar 

  41. Jiang GY, Zheng N, Chen X, Ding GY, Li YH, Sun FG. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem Eng J. 2019;373(1):1309. https://doi.org/10.1016/j.cej.2019.05.119.

    Article  CAS  Google Scholar 

  42. Chung SH, Manthiram A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator. J Phys Chem Lett. 2014;5(11):1978. https://doi.org/10.1021/jz5006913.

    Article  CAS  PubMed  Google Scholar 

  43. Feng GL, Liu XH, Wu ZG, Chen YX, Yang ZG, Wu CJ. Enhancing performance of Li-S batteries by coating separator with MnO @ yeast-derived carbon spheres. J Alloys Compd. 2020;817(15):152723. https://doi.org/10.1016/j.jallcom.2019.152723.

    Article  CAS  Google Scholar 

  44. Yang YB, Wang SX, Zhang LT, Deng YF, Xu H, Qin XS. CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries. Chem Eng J. 2019;369:77. https://doi.org/10.1016/j.cej.2019.03.034.

    Article  CAS  Google Scholar 

  45. He YB, Qiao Y, Chang Z, Zhou HS. The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy Environ Sci. 2019;12(8):2327. https://doi.org/10.1039/c8ee03651a.

    Article  CAS  Google Scholar 

  46. Xu GY, Yan QB, Wang ST, Kushima A, Bai P, Liu K. A thin multifunctional coating on a separator improves the cyclability and safety of lithium sulfur batteries. Chem Sci. 2017;8(9):6619. https://doi.org/10.1039/c7sc01961k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan H, Peng HJ, Li BQ, Xie J, Kong L, Zhao M. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv Energy Mater. 2018;9(1):1802768. https://doi.org/10.1002/aenm.201802768.

    Article  CAS  Google Scholar 

  48. Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework. Nature. 1995;378:703. https://doi.org/10.1038/378703a0.

    Article  CAS  Google Scholar 

  49. Zafar F, Sharmin E. Metal-organic frameworks || bio-inspired metal-organic frameworks in the pharmaceutical world: a brief review. J Intech. 2016;10:5772. https://doi.org/10.5772/64027.

    Article  CAS  Google Scholar 

  50. Wang H, Zhu QL, Zou R, Qiang X. Metal-organic frameworks for energy applications. Chem. 2017;2(1):52. https://doi.org/10.1016/j.chempr.2016.12.002.

    Article  CAS  Google Scholar 

  51. Weinberger C, Tiemann M. Metal-organic frameworks for energy applications. Nanomaterials. 2020;10(4):699. https://doi.org/10.3390/nano10040699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ye ZQ, Jiang Y, Li L, Wu F, Chen RJ. Rational design of MOF-based materials for next-generation rechargeable batteries. Nanomicro Lett. 2021;13(1):203. https://doi.org/10.1007/s40820-021-00726-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Angelo K, Liang F, Hannah F. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018;47(23):8611. https://doi.org/10.1039/c8cs00688a.

  54. Yaqoob L, Noor T, Iqbal N, Nasir H, Sohail M, Zaman N. Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: an efficient and robust electocatalyst for oxygen evaluation reaction (OER). Renew Energ. 2020;156:1040. https://doi.org/10.1016/j.renene.2020.04.131.

    Article  CAS  Google Scholar 

  55. Hanif S, Shi X, Iqbal N, Noor T, Kannan AM. ZIF derived PtNiCo/NC cathode catalyst for proton exchange membrane fuel cell. Appl Catal B. 2019;258(5):117947. https://doi.org/10.1016/j.apcatb.2019.117947.

    Article  CAS  Google Scholar 

  56. Noor T, Ammad M, Zaman N, Iqbal N, Nasir H. A highly efficient and stable copper BTC metal organic framework derived electrocatalyst for oxidation of methanol in DMFC application. Catal Lett. 2019;149(12):3312. https://doi.org/10.1007/s10562-019-02904-6.

    Article  CAS  Google Scholar 

  57. Asghar A, Iqbal N, Aftab L, Noor T, Easun TL. Ethylenediamine loading into a manganese-based metal-organic framework enhances water stability and carbon dioxide uptake of the framework. Royal Soc Open Sci. 2020;7(3):2054. https://doi.org/10.1098/rsos.191934.

    Article  CAS  Google Scholar 

  58. Lan YQ, Dong LZ, Zhang Y, Lu YF, Li SL. Well-defined dual mn-sites based metal-organic framework to promote CO2 reduction/evolution in Li-CO2 batteries. Chem Commun. 2021;57(71):8937. https://doi.org/10.1039/d1cc03431f.

    Article  CAS  Google Scholar 

  59. Cui R, Zhao P, Yan Y, Bao G, Liu Z. Outstanding drug-loading/release capacity of hollow Fe-metal-organic framework-based microcapsules: a potential multifunctional drug-delivery platform. Inorg Chem. 2021;60(3):1664. https://doi.org/10.1021/acs.inorgchem.0c03156.

    Article  CAS  PubMed  Google Scholar 

  60. Chung SH, Han P, Singhal R, Kalra V, Manthiram A. Lithium-sulfur batteries: electrochemically stable rechargeable lithium-sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv Energy Mater. 2015;5(18):1500738. https://doi.org/10.1002/aenm.201500738.

    Article  CAS  Google Scholar 

  61. Li Y, Lin S, Wang D, Gao T, Song J, Zhou P. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv Mater. 2020;32(8):1906722. https://doi.org/10.1002/adma.201906722.

    Article  CAS  Google Scholar 

  62. Chen HH, Xiao YW, Chen C, Yang JY, Gao C, Chen YS. Conductive MOF-modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method. ACS Appl Mater Interfaces. 2019;11(12):11459. https://doi.org/10.1021/acsami.8b22564.

    Article  CAS  PubMed  Google Scholar 

  63. Chen YL, Zhang LJ, Pan H, Zhang JD, Xiang SC, Cheng ZB. Pore-space-partitioned MOF separator promotes high-sulfur-loading Li-S batteries with intensified rate capability and cycling life. J Mater Chem A. 2021;9(47):26929. https://doi.org/10.1039/d1ta07820h.

    Article  CAS  Google Scholar 

  64. Chang Z, Qiao Y, Wang J, Deng H, He P, Zhou HS. Fabricating better metal-organic frameworks separators for Li-S batteries: pore sizes effects inspired channel modification strategy. Energy Stor Mater. 2020;25:164. https://doi.org/10.1016/j.ensm.2019.10.018.

    Article  Google Scholar 

  65. Yu J, Mu C, Yan B, Qin X, Shen C, Xue H. Nanoparticle/MOF composites: preparations and applications. Mater Horizons. 2017;4(4):557. https://doi.org/10.1039/c6mh00586a.

    Article  CAS  Google Scholar 

  66. Zheng Y, Zheng SS, Xue HG, Pang H. Metal-organic frameworks for lithium-sulfur batteries. J Mater Chem A. 2019;7(8):3469. https://doi.org/10.1039/c8ta11075a.

    Article  CAS  Google Scholar 

  67. Yin HQ, Yin XB. Metal-organic frameworks with multiple luminescence emissions: designs and applications. Acc Chem Res. 2020;53(2):485. https://doi.org/10.1021/acs.accounts.9b00575.

    Article  CAS  PubMed  Google Scholar 

  68. Ujr A, Sj A, Pcr B, Jsc D, Ckd E, My B. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev. 2021;426(1):213544. https://doi.org/10.1016/j.ccr.2020.213544.

    Article  CAS  Google Scholar 

  69. Dong KY, Ahmed I, Sarker M, Lee HJ, Vinu A, Jhung SH. Metal-organic frameworks containing uncoordinated nitrogen: preparation, modification, and application in adsorption. Mater Today. 2021;51:566. https://doi.org/10.1016/j.mattod.2021.07.021.

    Article  CAS  Google Scholar 

  70. Bhadra BN, Ahmed I, Lee HJ, Jhung SH. Metal-organic frameworks bearing free carboxylic acids: preparation, modification, and applications. Coord Chem Rev. 2022;450(1): 214237. https://doi.org/10.1016/j.ccr.2021.214237.

    Article  CAS  Google Scholar 

  71. Yang YF, Wang WK, Meng GL, Zhang JP. Function-directed design of battery separators based on microporous polyolefin membranes. J Mater Chem A. 2022;10(27):14137. https://doi.org/10.1039/d2ta03511a.

    Article  CAS  Google Scholar 

  72. Arora P, Zhang ZJ. Battery separators. Chem Rev. 2004;104(10):4419. https://doi.org/10.1021/cr020738u.

    Article  CAS  PubMed  Google Scholar 

  73. Xiao W, Zhao LN, Gong YQ, Liu JG, Yan CW. Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries. J Membr Sci. 2015;487(1):221. https://doi.org/10.1016/j.memsci.2015.04.004.

    Article  CAS  Google Scholar 

  74. Xue CH, Jin DD, Nan H, Wei HM, Chen HY, Zhang C. A novel polymer-modified separator for high-performance lithium-ion batteries. J Power Sources. 2022;449(15): 227548. https://doi.org/10.1016/j.jpowsour.2019.227548.

    Article  CAS  Google Scholar 

  75. Chung TS, Lan YJ, Yi L, Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci. 2007;32(4):483. https://doi.org/10.1016/j.progpolymsci.2007.01.008.

    Article  CAS  Google Scholar 

  76. Kalaj M, Bentz KC, Ayala S, Palomba JM, Barcus KS, Katayama Y. MOF-polymer hybrid materials: from simple composites to tailored architectures. Chem Rev. 2020;120(16):8267. https://doi.org/10.1021/acs.chemrev.9b00575.

    Article  CAS  PubMed  Google Scholar 

  77. Liu C, Wang J, Wan J, Yu C. MOF-on-MOF hybrids: synthesis and applications. Coord Chem Rev. 2021;432(1): 213743. https://doi.org/10.1016/j.ccr.2020.213743.

    Article  CAS  Google Scholar 

  78. Suriyakumar S, Kanagaraj M, Kathiresan M, Angulakshmi N, Thomas S, Stephan AM. Metal-organic frameworks based membrane as a permselective separator for lithium-sulfur batteries. Electrochim Acta. 2018;265(1):151. https://doi.org/10.1016/j.electacta.2018.01.155.

    Article  CAS  Google Scholar 

  79. Tian M, Pei F, Yao MS, Fu ZH, Lin LL, Wu GD. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Stor Mater. 2019;21:14. https://doi.org/10.1016/j.ensm.2018.12.016.

    Article  Google Scholar 

  80. Chen H, Xiao Y, Chen C, Yang J, Gao C, Chen Y. Conductive MOF modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method. ACS Appl Mater Interfaces. 2019;11(12):11459. https://doi.org/10.1021/acsami.8b22564.

    Article  CAS  PubMed  Google Scholar 

  81. Han J, Gao S, Wang R, Wang K, Jiang M, Yan J. Investigation of the mechanism of metal–organic frameworks preventing polysulfide shuttling from the perspective of composition and structure. J Mater Chem A. 2020;8(14):6661. https://doi.org/10.1039/d0ta00533a.

    Article  CAS  Google Scholar 

  82. Wang Z, Huang W, Hua J, Wang Y, Pan F. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries. Small Methods. 2020;4(7):2000082. https://doi.org/10.1002/smtd.202000082.

    Article  CAS  Google Scholar 

  83. Denny MS, Mark K, Bentz KC, Cohen SM. Multicomponent metal-organic framework membranes for advanced functional composites. Chem Sci. 2018;9(47):8842. https://doi.org/10.1039/c8sc02356e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. He J, Chen Y, Manthiram A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy Environ Sci. 2018;11(9):2560. https://doi.org/10.1039/c8ee00893k.

    Article  CAS  Google Scholar 

  85. Liu JW, Wang JN, Zhu L, Chen X, Ma QY, Wang L. A high-safety and multifunctional MOFs modified aramid nanofiber separator for lithium-sulfur batteries. Chem Eng J. 2021;411(1):128540. https://doi.org/10.1016/j.cej.2021.128540.

    Article  CAS  Google Scholar 

  86. Gao GK, Wang YR, Zhu HJ, Chen YF, Yang RX, Jiang C. Rapid production of metal-organic frameworks based separators in industrial-level efficiency. Adv Sci. 2020;7(24):2002190. https://doi.org/10.1002/advs.202002190.

    Article  CAS  Google Scholar 

  87. Denny MS, Cohen SM. In situ modification of metal-organic frameworks in mixed-matrix membranes. Angew Chem Int Ed. 2015;54(31):9029. https://doi.org/10.1002/anie.201504077.

    Article  CAS  Google Scholar 

  88. Liu BQ, Thoi VS. Improving charge transfer in metal-organic frameworks through open site functionalization and porosity selection for Li-S batteries. Chem Mater. 2020;32(19):8450. https://doi.org/10.1021/acs.chemmater.0c02438.

    Article  CAS  Google Scholar 

  89. Liang ZB, Qu C, Guo WH, Zou RQ, Xu Q. Pristine metal-organic frameworks and their composites for energy storage and conversion. J Adv Mater. 2017;30(37):1702891. https://doi.org/10.1002/adma.201702891.

    Article  CAS  Google Scholar 

  90. Demircakan R, Morcrette M, Nouar F, Davoisne C, Devic T, Gonbeau D, Dominko R, Serre C, Férey G, Tarascon J. Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J Am Chem Soc. 2011;133(40):16154. https://doi.org/10.1021/ja2062659.

    Article  CAS  PubMed  Google Scholar 

  91. Qi C, Xu L, Wang J, Li HL, Zhao CC, Wang LN. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries. ACS Sustain Chem Eng. 2020;8(34):12968. https://doi.org/10.1021/acssuschemeng.0c03536.

    Article  CAS  Google Scholar 

  92. Bai SY, Liu XZ, Zhu K, Wu SC, Zhou HS. Metal-organic framework-based separator for lithium-sulfur batteries. Nat Energy. 2016;1:16094. https://doi.org/10.1038/NENERGY.2016.94.

    Article  CAS  Google Scholar 

  93. Liu W, Mi YY, Weng Z, Zhong YR, Wu ZS, Wang HL. Functional metal-organic framework boosting lithium metal anode performance via chemical interactions. Chem Sci. 2017;8(6):4285. https://doi.org/10.1039/c7sc00668c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zang Y, Pei F, Huang JH, Fu ZH, Xu G, Fang XL. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries. Adv Energy Mater. 2018;8(31):1802052. https://doi.org/10.1002/aenm.201802052.

    Article  CAS  Google Scholar 

  95. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J. 2021;403(1):126352. https://doi.org/10.1016/j.cej.2020.126352.

    Article  CAS  Google Scholar 

  96. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666. https://doi.org/10.1126/science.1102896.

    Article  CAS  PubMed  Google Scholar 

  97. Liu H, Yang W. Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ Sci. 2011;4(10):4000. https://doi.org/10.1039/c1ee01353j.

    Article  CAS  Google Scholar 

  98. Guo SJ, Xiao YB, Wang J, Ouyang Y, Li X, Deng HY. Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries. Nano Res. 2021;14(12):4556. https://doi.org/10.1007/s12274-021-3372-5.

    Article  CAS  Google Scholar 

  99. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56. https://doi.org/10.1038/354056a0.

    Article  CAS  Google Scholar 

  100. Wang Y, Deng Z, Huang JY, Li HJ, Li ZY, Peng XS. 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery. Energy Stor Mater. 2021;36:466. https://doi.org/10.1016/j.ensm.2021.01.025.

    Article  Google Scholar 

  101. Qian XY, Li F, Jin LA. MOF drived MnO/N-C/CNT composite and its modified separator for advanced Li-S battery. Microporous Mesoporous Mater. 2022;329:111558. https://doi.org/10.1016/j.micromeso.2021.111558.

    Article  CAS  Google Scholar 

  102. Hu XH, Huang T, Wang SP, Lin SJ, Feng ZH, Chung LH. Separator modified by Co-porphyrin based Zr-MOF@CNT composite enabling efficient polysulfides catalytic conversion for advanced lithium-sulfur batteries. Electrochim Acta. 2021;398(1):139317. https://doi.org/10.1016/j.electacta.2021.139317.

    Article  CAS  Google Scholar 

  103. Song CL, Li GH, Yang Y, Hong XJ, Huang S, Zheng QF. 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery. Chem Eng J. 2020;381(1):122701. https://doi.org/10.1016/j.cej.2019.122701.

    Article  CAS  Google Scholar 

  104. Xie PF, Zhang BY, Zhou YK, Li P, Tian XH. A dual-coated multifunctional separator for the high-performance lithium-sulfur batteries. Electrochim Acta. 2021;395(1):139181. https://doi.org/10.1016/j.electacta.2021.139181.

    Article  CAS  Google Scholar 

  105. Zhao Z, Yin W, Li H, Jiao Y, Lei D, Li Y, Guo J, Bai W, Xiang M. Low temperature synthesis of hierarchically porous carbon host for durable lithium-sulfur batteries. Microporous Mesoporous Mater. 2022;337:111946. https://doi.org/10.1016/j.micromeso.2022.111946.

    Article  CAS  Google Scholar 

  106. Zeng P, Huang L, Han Y, Zhang X, Zhang R. Reduced shuttle effect of lithium-sulfur batteries by using a simple graphite-modified separator with a preformed SEI film. ChemElectroChem. 2018;5(2):375. https://doi.org/10.1002/celc.201700924.

    Article  CAS  Google Scholar 

  107. Zhao D, Qian X, Jin L, Yang X, Wang S, Shen X, Yao S. Separator modified by Ketjen black for enhanced electrochemical performance of lithium-sulfur batteries. RSC Adv. 2016;6(17):13680. https://doi.org/10.1039/C5RA26476F.

    Article  CAS  Google Scholar 

  108. Jin L, Fu Z, Qian X, Huang B, Li F, Wang Y. Catalytic Co-N-C hollow nanocages as separator coating layer for lithium-sulfur batterys. Microporous Mesoporous Mater. 2021;316:110927. https://doi.org/10.1016/j.micromeso.2021.110927.

    Article  CAS  Google Scholar 

  109. Liao C, Mu X, Han L, Li Z, Zhu Y, Lu J, Wang H, Song L, Kan Y, Hu Y. A flame-retardant, high ionic-conductivity and eco-friendly separator prepared by papermaking method for high-performance and superior safety lithium-ion batteries. Energy Stor Mater. 2022;48:123. https://doi.org/10.1016/j.ensm.2022.03.008.

    Article  Google Scholar 

  110. Huang YC, Yen YJ, Tseng YH, Chung SH. Module-designed carbon-coated separators for high-loading, high-sulfur-utilization cathodes in lithium-sulfur batteries. Molecules. 2021;27(1):228. https://doi.org/10.3390/molecules27010228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jin L, Fu Z, Qian X, Huang B, Li F, Wang YH, Wang Bing, Shen XQ. Co-N/KB porous hybrid derived from ZIF 67/KB as a separator modification material for lithium-sulfur batteries. Electrochim. Acta, 2021;382(20):138282. https://doi.org/10.1016/j.electacta.2021.138282.

  112. Wang XX, Ni L, Xie QX, Zhang JB, Zhao YQ, Zhao P, Meng JQ, Zhang SM, Huang WP. Highly electrocatalytic active amorphous Al2O3 in porous carbon assembled on carbon cloth as an independent multifunctional interlayer for advanced lithium-sulfur batteries. Appl Surf Sci. 2023;618(1):156689. https://doi.org/10.1016/j.apsusc.2023.156689.

    Article  CAS  Google Scholar 

  113. Wu L, Hou H, Hu J, Liu B, Yang X, Chen S, Liu L, Hu S, Yang J. N-doped hollow carbon nanoparticles encapsulated fibers derived from ZIF-8 self-sacrificed template for advanced lithium-sulfur batteries. Microporous Mesoporous Mater. 2021;317:111000. https://doi.org/10.1016/j.micromeso.2021.111000.

    Article  CAS  Google Scholar 

  114. Zhang XJ, Chen LL, Yang Z, Qiu XY, Zheng ZM. Investigation of the structural effect of the carbon coated separator towards to the properties of Li-S batteries. Mater Lett. 2021;290(1):129512. https://doi.org/10.1016/j.matlet.2021.129512.

    Article  CAS  Google Scholar 

  115. Kim A, Oh SH, Adhikari A, Sathe BR, Kumar S. Recent advances in modified commercial separators for lithium-sulfur batteries. J Mater Chem A. 2023;11(15):7833. https://doi.org/10.1039/D2TA09266B.

    Article  CAS  Google Scholar 

  116. He YB, Chang Z, Wu SC, Qiao Y, Bai SY, Jiang KZ. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-Based membrane in Li-S batteries. Adv Energy Mater. 2018;8(34):1802130. https://doi.org/10.1002/aenm.201802130.

    Article  CAS  Google Scholar 

  117. Xu P, Chen HY, Zhou X, Xiang HF. Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery. J Membr Sci. 2021;617(1):118660. https://doi.org/10.1016/j.memsci.2020.118660.

    Article  CAS  Google Scholar 

  118. Bui VT, Nguyen VT, Nguyen NA, Umapathi R, Larina LL, Kim JH. Multilayered PVDF-HFP porous separator via phase separation and selective solvent etching for high voltage lithium-ion batteries. Membranes. 2021;11(1):41. https://doi.org/10.3390/membranes11010041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang ZQ, Huang WY, Hua JC, Wang YD, Yi HC, Zhao WG. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries. Small Methods. 2020;4(7):2000082. https://doi.org/10.1002/smtd.202000082.

    Article  CAS  Google Scholar 

  120. Wang HF, Chen LY, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev. 2020;49(5):1414. https://doi.org/10.1039/c9cs00906j.

    Article  CAS  PubMed  Google Scholar 

  121. Zhou ZF, Li Y, Fang TT, Zhao YF, Wang QJ, Zhang JJ. MOF-derived Co3O4 polyhedrons as efficient polysulfides barrier on polyimide separators for high temperature lithium-sulfur batteries. Nanomaterials. 2019;9(11):1574. https://doi.org/10.3390/nano9111574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hong XJ, Song CL, Wu ZM, Li ZH, Cai YP, Wang CX. Sulfophilic and lithophilic sites in bimetal nickel-zinc carbide with fast conversion of polysulfides for high-rate Li-S battery. Chem Eng J. 2021;404(15):126566. https://doi.org/10.1016/j.cej.2020.126566.

    Article  CAS  Google Scholar 

  123. Zhang XM, Li GR, Zhang YG, Luo D, Yu AP, Wang X. Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy. 2021;86:106094. https://doi.org/10.1016/j.nanoen.2021.106094.

    Article  CAS  Google Scholar 

  124. Kang X, Di Bernardo I, Yang HL, Torres JF, Zhang L. Metal-organic framework microdomains in 3D conductive host as polysulfide inhibitor for fast, long-cycle Li-S batteries. Appl Surf Sci. 2021;535(1):147680. https://doi.org/10.1016/j.apsusc.2020.147680.

    Article  CAS  Google Scholar 

  125. Zhou GM, Tian HZ, Jin Y, Tao XY, Liu BF, Zhang RF. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc Natl Acad Sci USA. 2017;114(5):840. https://doi.org/10.1073/pnas.1615837114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Deng NP, Wang LY, Feng Y, Liu M, Li QX, Wang G. Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium-sulfur batteries. Chem Eng J. 2020;388(15):124241. https://doi.org/10.1016/j.cej.2020.124241.

    Article  CAS  Google Scholar 

  127. Wang X, Hua HM, Xie XH, Zhang P, Zhao JB. Hydroxyl on the filler surface promotes Li+ conduction in PEO all-solid-state electrolyte. Solid State Ion. 2021;372(1):115768. https://doi.org/10.1016/j.ssi.2021.115768.

    Article  CAS  Google Scholar 

  128. Zhang JX, Zhao N, Zhang M, Li YQ, Chu PK, Guo XX. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy. 2016;28:447. https://doi.org/10.1016/j.nanoen.2016.09.002.

    Article  CAS  Google Scholar 

  129. Liu C, Wang JX, Kou WJ, Yang ZH, Zhai PF, Liu Y. A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries. Chem Eng J. 2021;404(15):126517. https://doi.org/10.1016/j.cej.2020.126517.

    Article  CAS  Google Scholar 

  130. Su YC, Wang WS, Wang WK, Wang AB, Huang YQ, Guan YP. Cerium-based MOF as a separator coating for high-performance lithium-sulfur batteries. J Electrochem Soc. 2022;169(3): 030528. https://doi.org/10.1149/1945-7111/ac5b36.

    Article  CAS  Google Scholar 

  131. Chen H, Adekoya D, Hencz L, Ma J, Chen S, Yan C. Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv Energy Mater. 2020;10(21):2000049. https://doi.org/10.1002/aenm.202000049.

    Article  CAS  Google Scholar 

  132. Chen L, Li YT, Li SP, Fan LZ, Nan CW, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic.” Nano Energy. 2018;46:176. https://doi.org/10.1016/j.nanoen.2017.12.037.

    Article  CAS  Google Scholar 

  133. Han DD, Wang ZY, Pan GL, Gao XP. Metal-organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium-sulfur battery. ACS Appl Mater Interfaces. 2019;11(20):18427. https://doi.org/10.1021/acsami.9b03682.

    Article  CAS  PubMed  Google Scholar 

  134. Han J, Gao S, Wang RX, Wang KL, Jiang M, Yan J. Investigation of the mechanism of metal-organic frameworks preventing polysulfide shuttling from the perspective of composition and structure. J Mater Chem A. 2020;8(14):6661. https://doi.org/10.1039/d0ta00533a.

    Article  CAS  Google Scholar 

  135. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(309):19. https://doi.org/10.1021/ja01269a023.

    Article  Google Scholar 

  136. Cai JS, Song YZ, Chen X, Sun ZT, Yi YY, Sun JY. MOF-derived conductive carbon nitrides for separator-modified Li-S batteries and flexible supercapacitors. J Mater Chem A. 2020;8(4):1757. https://doi.org/10.1039/c9ta11958b.

    Article  CAS  Google Scholar 

  137. Feng Y, Wang G, Wang LY, Ju JG, Kang WM, Deng NP. Taming polysulfides and facilitating redox: novel interlayer based on chestnut-like and multi-level structural materials for ultra-stable lithium-sulfur batteries. J Alloys Compd. 2021;851(15):156859. https://doi.org/10.1016/j.jallcom.2020.156859.

    Article  CAS  Google Scholar 

  138. Qian XY, Wang YH, Jin LN, Cheng J, Chen JY, Huang BB. Application of Ni-MOF derived Ni-C composite on separator modification for Li-S batteries. J Electroanal Chem. 2022;907(15):116029. https://doi.org/10.1016/j.jelechem.2022.116029.

    Article  CAS  Google Scholar 

  139. Deng SZ, Yan YC, Wei LQ, Li T, Su X, Yang XJ. Amorphous Al2O3 with N-doped porous carbon as efficient polysulfide barrier in Li-S batteries. ACS Appl Energy Mater. 2019;2(2):1266. https://doi.org/10.1021/acsaem.8b01815.

    Article  CAS  Google Scholar 

  140. Zhou C, He Q, Li ZH, Meng JS, Hong XF, Li Y. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem Eng J. 2020;395(1):124979. https://doi.org/10.1016/j.cej.2020.124979.

    Article  CAS  Google Scholar 

  141. Zhou C, Chen MJ, Dong CX, Wang H, Shen CL, Wu XX. The continuous efficient conversion and directional deposition of lithium (poly)sulfides enabled by bimetallic site regulation. Nano Energy. 2022;98:107332. https://doi.org/10.1016/j.nanoen.2022.107332.

    Article  CAS  Google Scholar 

  142. Li ML, Wan Y, Huang JK, Assen AH, Hsiung CE, Jiang H. Metal-organic framework-based separators for enhancing Li-S battery stability: mechanism of mitigating polysulfide diffusion. ACS Energy Lett. 2017;2(10):2362. https://doi.org/10.1021/acsenergylett.7b00692.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of Yunnan Province (No. 202101AW070006), the Basic Research Plan (Key Project) of Yunnan Province (No. 202101BE070001-018), Yunnan Major Scientific and Technological Projects (No. 202202AG050003), and the Key Research and Development Program of Yunnan Province (No. 202103AA080019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Yong Zhang or Xue Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, RW., Wang, YQ., You, D. et al. MOF and its derivative materials modified lithium–sulfur battery separator: a new means to improve performance. Rare Met. 43, 2418–2443 (2024). https://doi.org/10.1007/s12598-024-02631-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02631-x

Keywords

Navigation