Skip to main content

Advertisement

Log in

Laser powder bed fusion of NiTiFe shape memory alloy via pre-mixed powder: microstructural evolution, mechanical and functional properties

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High-cost pre-alloyed powder is the bottleneck problem that limits the widespread application of additive-manufactured shape memory alloys. In this work, the low-cost ternary NiTiFe shape memory alloy is fabricated by laser powder bed fusion (LPBF) technique via mechanically mixed pre-alloy NiTi powder and varying contents pure Fe powder (1, 2, 3 wt%). All NiTiFe alloys show a relative density of up to 99.8% by optimizing the LPBF processing parameters. Owing to the heterogeneous nucleation effect of micron-sized Fe particles, both grain refinement and texture weakening are generated in the NiTiFe alloys, accompanied by the reduction of dislocation density. For the room-temperature mechanical properties, the NiTi-3Fe alloy shows the highest microhardness of HV 370, but the fracture strength and elongation reduce to 1701 MPa and 23% simultaneously. The evolution of mechanical properties is attributed to the high internal defects, low dislocation density and the incoherent oxide. Moreover, the NiTi-3Fe alloy shows the quasi-linear superelasticity behavior; the superelastic recoverable strain of NiTi-1Fe and NiTi-2Fe decreased with the increase in Fe content. This study provided a new-fangled insight for the development of multi-component NiTi-based shape memory alloys by additive manufacturing.

Graphical abstract

摘要

高成本的预合金粉末是限制增材制造形状记忆合金广泛应用的瓶颈问题。在当前工作中,通过机械混合预合金NiTi粉末和不同质量分数的纯Fe粉末(1 wt%, 2 wt%, 3 wt%),用激光粉末床熔融(LPBF)技术制造了低成本的三元NiTiFe形状记忆合金。通过优化LPBF工艺参数,所有NiTiFe合金的相对密度都达到了99.8%。由于微米级Fe颗粒的异质成核效应,NiTiFe合金中产生了晶粒细化和织构弱化,同时伴随着位错密度的降低。在室温力学性能方面,NiTi-3Fe合金显示出高达HV370的显微硬度,但断裂强度和伸长率同时降低到1701 MPa和23%。力学性能的变化归因于高内部缺陷、低位错密度和不连贯的氧化物。此外,NiTi-3Fe合金在室温下显示出准线性超弹性特征,NiTi-1Fe和NiTi-2Fe的超弹性可恢复应变随着铁含量的增加而减少。该研究为通过增材制造开发多元NiTi基形状记忆合金提供了新思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hao SJ, Cui LS, Jiang DQ, Han XD, Ren Y, Jiang J, Liu YN, Liu ZY, Mao SC, Wang YD, Li Y, Ren XB, Ding XD, Wang S, Yu C, Shi XB, Minshu Du, Yang F, Zheng YJ, Zhang Z, Li XD, Brown D, Li J. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science. 2013;339(6124):1191. https://doi.org/10.1126/science.12286025.

    Article  CAS  PubMed  Google Scholar 

  2. Yang R, Li S, Zhang N, Wang C, Wang TM, Wang QH. Tribology behaviors of Ti-Ni51.5 at% shape memory alloy with different microstructures and textures. Rare Met. 2021;40(12):3616. https://doi.org/10.1007/s12598-021-01706-3.

    Article  CAS  Google Scholar 

  3. Guo YT, Xu ZZ, Liu MQ, Zu S, Yang YN, Wang Q, Yu ZL, Zhang ZH, Ren LQ. The corrosion resistance, biocompatibility and biomineralization of the dicalcium phosphate dihydrate coating on the surface of the additively manufactured NiTi alloy. J Market Res. 2022;17:622. https://doi.org/10.1016/j.jmrt.2022.01.063.

    Article  CAS  Google Scholar 

  4. Rf H, Sehitoglu H, Chumlyakov Y, Hj M. Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater. 2004;52(11):3383. https://doi.org/10.1016/j.actamat.2004.03.038.

    Article  CAS  Google Scholar 

  5. Wang GJ, Liu ZQ, Ai X, Huang WM, Niu JT. Effect of cutting parameters on strain hardening of nickel–titanium shape memory alloy. Smart Mater Struct. 2018;27(7):075027. https://doi.org/10.1088/1361-665X/aac43d.

    Article  Google Scholar 

  6. Molnárová O, Tyc O, Heller L, Seiner H, Šittner P. Evolution of martensitic microstructures in nanocrystalline NiTi wires deformed in tension. Acta Mater. 2021;218:117166. https://doi.org/10.1016/j.actamat.2021.117166.

    Article  CAS  Google Scholar 

  7. Wendler F, Ossmer H, Chluba C, Quandt E, Kohl M. Mesoscale simulation of elastocaloric cooling in SMA films. Acta Mater. 2017;136:105. https://doi.org/10.1016/j.actamat.2017.06.044.

    Article  CAS  Google Scholar 

  8. Porenta L, Kabirifar P, Žerovnik A, Čebron M, Žužek B, Dolenec M, Brojan M, Tušek J. Thin-walled Ni-Ti tubes under compression: ideal candidates for efficient and fatigue-resistant elastocaloric cooling. Appl Mater Today. 2020;20:100712. https://doi.org/10.1016/j.apmt.2020.100712.

    Article  Google Scholar 

  9. Wang XB, Yu JY, Liu JW, Chen LG, Yang Q, Wei HL, Sun J, Wang ZC, Zhang ZH, Zhao GQ, Van HJ. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting. Addit Manuf. 2020;36:101545. https://doi.org/10.1016/j.addma.2020.101545.

    Article  CAS  Google Scholar 

  10. Lu BW, Cui XF, Jin G, Dong ML, Fang YC, Wen X, Ma WY. Effect of La2O3 addition on mechanical properties and wear behaviour of NiTi alloy fabricated by direct metal deposition. Opt Laser Technol. 2020;129:106290. https://doi.org/10.1016/j.optlastec.2020.106290.

    Article  CAS  Google Scholar 

  11. Resnina N, Ia P, Belyaev S, Ssmani P, Liulchak P, Karaseva U, Manikandan M, Jayachandran S, Bryukhanova V, Anshu S, Bikbaev R. Structure, martensitic transformations and mechanical behaviour of NiTi shape memory alloy produced by wire arc additive manufacturing. J Alloys Compd. 2021;851:156851. https://doi.org/10.1016/j.jallcom.2020.156851.

    Article  CAS  Google Scholar 

  12. Zhang DZ, Li YZ, Wang H, Cong WL. Ultrasonic vibration-assisted laser directed energy deposition in-situ synthesis of NiTi alloys: effects on microstructure and mechanical properties. J Manuf Process. 2020;60:328. https://doi.org/10.1016/j.jmapro.2020.10.058.

    Article  Google Scholar 

  13. Yang Q, Sun KH, Yang C, Sun MY, Peng HB, Shen XF, Huang SK, Chen J. Compression and superelasticity behaviors of NiTi porous structures with tiny strut fabricated by selective laser melting. J Alloy Compd. 2021;858:157674. https://doi.org/10.1016/j.jallcom.2020.157674.

    Article  CAS  Google Scholar 

  14. Zhao M, Qing HB, Wang YX, Liang J, Zhao MY, Geng YL, Liang JZ, Lu BH. Superelastic behaviors of additively manufactured porous NiTi shape memory alloys designed with Menger sponge-like fractal structures. Mater Des. 2021;200:109448. https://doi.org/10.1016/j.matdes.2021.109448.

    Article  CAS  Google Scholar 

  15. Xiong ZW, Li HH, Yang H, Yang Y, Liu YN, Cui LS, Li XX, Masseling L, Shen LYW, Hao SJ. Micro laser powder bed fusion of NiTi alloys with superior mechanical property and shape recovery function. Addit Manuf. 2022;57:102960. https://doi.org/10.1016/j.addma.2022.102960.

    Article  CAS  Google Scholar 

  16. Lu HZ, Liu LH, Yang C, Luo X, Song CH, Wang Z, Wang J, Su YD, Ding YF, Zhang LC, Li YY. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting. J Mater Sci Technol. 2022;101:205. https://doi.org/10.1016/j.jmst.2021.06.019.

    Article  CAS  Google Scholar 

  17. Yu ZL, Xu ZZ, Guo YT, Xin RL, Liu RY, Jiang CR, Li LX, Zhang ZH, Ren LQ. Study on properties of SLM-NiTi shape memory alloy under the same energy density. J Market Res. 2021;13:241. https://doi.org/10.1016/j.jmrt.2021.04.058.

    Article  CAS  Google Scholar 

  18. Cao YX, Zhou XL, Cong DY, Zheng HX, Cao YH, Nie ZH, Chen Z, Li SH, Xu N, Gao ZY, Cai W, Wang YD. Large tunable elastocaloric effect in additively manufactured Ni-Ti shape memory alloys. Acta Mater. 2020;194:178. https://doi.org/10.1016/j.actamat.2020.04.007.

    Article  CAS  Google Scholar 

  19. Saedi S, Shayesteh MN, Amerinatanzi A, Elahinia M, Karaca H. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater. 2018;144:552. https://doi.org/10.1016/j.actamat.2017.10.072.

    Article  CAS  Google Scholar 

  20. Elahinia M, Shayesteh MN, Taheri AM, Amerinatanzi A, Bimber B, Hamilton R. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci. 2016;83:630. https://doi.org/10.1016/j.pmatsci.2016.08.001.

    Article  CAS  Google Scholar 

  21. Fischer M, Joguet D, Robin G, Peltier L, Laheurte P. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Mater Sci Eng, C. 2016;62:852. https://doi.org/10.1016/j.msec.2016.02.033.

    Article  CAS  Google Scholar 

  22. Li W, Chen XY, Yan L, Zhang JW, Zhang XC, Liou F. Additive manufacturing of a new Fe-Cr-Ni alloy with gradually changing compositions with elemental powder mixes and thermodynamic calculation. Int J Adv Manuf Technol. 2018;95(1–4):1013. https://doi.org/10.1007/s00170-017-1302-1.

    Article  Google Scholar 

  23. Zhang BC, Liao HL, Coddet C. Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture. Mater Des. 2012;34:753. https://doi.org/10.1016/j.matdes.2011.06.061.

    Article  CAS  Google Scholar 

  24. Zhang H, Xu W, Xu YJ, Lu ZL, Li DC. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): experiment and simulation. Int J Adv Manuf Technol. 2018;96(1):461. https://doi.org/10.1007/s00170-017-1331-9.

    Article  Google Scholar 

  25. Zhang BC, Chen J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder. J Mater Sci Technol. 2013;29(9):863. https://doi.org/10.1016/j.jmst.2013.05.006.

    Article  CAS  Google Scholar 

  26. Zhao CY, Liang HL, Luo SC, Yang JJ, Wang ZM. The effect of energy input on reaction, phase transition and shape memory effect of NiTi alloy by selective laser melting. J Alloy Compd. 2020;817:153288. https://doi.org/10.1016/j.jallcom.2019.153288.

    Article  CAS  Google Scholar 

  27. Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G. On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys. Acta Mater. 2015;90:213. https://doi.org/10.1016/j.actamat.2015.02.029.

    Article  CAS  Google Scholar 

  28. Elahinia M, Shayesteh MN, Amerinatanzi A, Saedi S, Toker G, Karaca H, Bigelow G, Benafan O. Additive manufacturing of NiTiHf high temperature shape memory alloy. Scripta Mater. 2018;145:90. https://doi.org/10.1016/j.scriptamat.2017.10.016.

    Article  CAS  Google Scholar 

  29. Meng XL, Li H, Cai W. Effect of training on the temperature memory effect in Ti49.5Ni34.5Cu11.5Pd4.5 shape memory alloy with narrow hysteresis. Scr Mater. 2016;118:29. https://doi.org/10.1016/j.scriptamat.2016.03.003.

    Article  CAS  Google Scholar 

  30. Zhang YL, Yang L, Yu L, Ma JY, Liu J. Ni-Ti-Zr ternary alloy with high transition temperature fabricated by laser powder bed fusion. J Alloy Compd. 2023;938:168529. https://doi.org/10.1016/j.jallcom.2022.168529.

    Article  CAS  Google Scholar 

  31. Zhang JS, Liu YN, Yang H, Ren Y, Cui LS, Jiang DQ, Wu ZG, Ma ZY, Guo FM, Bakhtiari S, Motazedian F, Li J. Achieving 5.9% elastic strain in kilograms of metallic glasses: nanoscopic strain engineering goes macro. Mater Today. 2020;37:18. https://doi.org/10.1016/j.mattod.2020.02.020.

    Article  CAS  Google Scholar 

  32. Liu SF, Han S, Zhang L, Chen LY, Wang LQ, Zhang L, Tang YJ, Liu J, Tang HP, Zhang LC. Strengthening mechanism and micropillar analysis of high-strength NiTi-Nb eutectic-type alloy prepared by laser powder bed fusion. Compos B Eng. 2020;200:108358. https://doi.org/10.1016/j.compositesb.2020.108358.

    Article  CAS  Google Scholar 

  33. Kim Y, Jo MG, Park JW, Park HK, Han HG. Elastocaloric effect in polycrystalline Ni50Ti45.3V4.7 shape memory alloy. Scr Mater. 2018;144:48. https://doi.org/10.1016/j.scriptamat.2017.09.048.

    Article  CAS  Google Scholar 

  34. Chen ZW, Gan CL, Qian JQ, Nong D. Effect of Cr content on phase transition characteristics and microhardness of near equiatomic NiTi SMA. Chin J Rare Met. 2021;45(9):1034. https://doi.org/10.13373/j.cnki.cjrm.XY20080009.

    Article  Google Scholar 

  35. Wang D, Zhang Z, Zhang J, Zhou YM, Wang Y, Ding XD, Wang YZ, Ren XB. Strain glass in Fe-doped Ti-Ni. Acta Mater. 2010;58(18):6206. https://doi.org/10.1016/j.actamat.2010.07.040.

    Article  CAS  Google Scholar 

  36. Shindo D, Murakami Y. Advanced transmission electron microscopy study on premartensitic state of Ti50Ni48Fe2. Sci Technol Adv Mater. 2000;1(2):117. https://doi.org/10.1016/S1468-6996(00)00008-5.

    Article  CAS  Google Scholar 

  37. Liu FS, Ding Z, Li Y, Xu HB. Phase transformation behaviors and mechanical properties of TiNiMo shape memory alloys. Intermetallics. 2005;13(3):357. https://doi.org/10.1016/j.intermet.2004.07.024.

    Article  CAS  Google Scholar 

  38. Fan GL, Zhou YM, Otsuka K, Ren XB, Suzuki T, Yin FX. Comparison of the two relaxation peaks in the Ti50Ni48Fe2 alloy. Mater Sci Eng, A. 2009;521–522:178. https://doi.org/10.1016/j.msea.2008.09.086.

    Article  CAS  Google Scholar 

  39. Liang YL, Jiang SY, Zhang YQ, Hu L, Zhao CZ. Microstructure evolution and deformation mechanism of NiTiFe shape memory alloy based on plane strain compression and subsequent annealing. Mater Chem Phys. 2018;215:112. https://doi.org/10.1016/j.matchemphys.2018.05.031.

    Article  CAS  Google Scholar 

  40. Liu X, Li H, Guan H, Yang ZW, Zhang YH, Gu QF, Yang JC. Degradation of recovery properties after heat treatment in hot-forged NiTiFe alloy. J Alloy Compd. 2022;928:167171. https://doi.org/10.1016/j.jallcom.2022.167171.

    Article  CAS  Google Scholar 

  41. Ge JG, Yuan B, Zhao L, Yan M, Chen W, Zhang L. Effect of volume energy density on selective laser melting NiTi shape memory alloys: microstructural evolution, mechanical and functional properties. J Market Res. 2022;20:2872. https://doi.org/10.1016/j.jmrt.2022.08.062.

    Article  CAS  Google Scholar 

  42. Yuan B, Ge JG, Chen HJ, Pan JG, Zhang L, Qi XZ. Printability and microstructure of Fe doped NiTi shape memory alloy fabricated by laser powder bed fusion. Mater Lett. 2022;328:133099. https://doi.org/10.1016/j.matlet.2022.133099.

    Article  CAS  Google Scholar 

  43. Shang CL, Wu HH, Pan GF, Zhu JQ, Wang SZ, Wu GL, Gao JH, Liu ZY, Li RD, Mao XP. The characteristic microstructures and properties of steel-based alloy via additive manufacturing. Materials. 2023;16:2696. https://doi.org/10.3390/ma16072696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ge JG, Yuan B, Chen HJ, Pan JG, Liu QY, Yan M, Lu Z, Zhang S, Zhang L. Anisotropy in microstructural features and tensile performance of laser powder bed fusion NiTi alloys. J Market Res. 2023;24:8656. https://doi.org/10.1016/j.jmrt.2023.05.046.

    Article  CAS  Google Scholar 

  45. Li W, Chen XY, Yan L, Zhang JW, Zhang XC, Liou F. Additive manufacturing of a new Fe-Cr-Ni alloy with gradually changing compositions with elemental powder mixes and thermodynamic calculation. Int J Adv Manuf Technol. 2018;95(1):1013. https://doi.org/10.1007/s00170-017-1302-1.

    Article  Google Scholar 

  46. Mosallanejad M, Niroumand B, Aversa A, Saboori A. In-situ alloying in laser-based additive manufacturing processes: a critical review. J Alloy Compd. 2021;872:159567. https://doi.org/10.1016/j.jallcom.2021.159567.

    Article  CAS  Google Scholar 

  47. Zhang BC, Fenineche N, Zhu L, Liao HL, Coddet C. Studies of magnetic properties of permalloy (Fe-30%Ni) prepared by SLM technology. J Magn Magn Mater. 2012;324(4):495. https://doi.org/10.1016/j.jmmm.2011.08.030.

    Article  CAS  Google Scholar 

  48. Wang R, Zhang K, Davies C, Wu X. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J Alloy Compd. 2017;694:971. https://doi.org/10.1016/j.jallcom.2016.10.138.

    Article  CAS  Google Scholar 

  49. Safdel A, Elbestawi M. New insights on the laser powder bed fusion processing of a NiTi alloy and the role of dynamic restoration mechanisms. J Alloy Compd. 2021;885:160971. https://doi.org/10.1016/j.jallcom.2021.160971.

    Article  CAS  Google Scholar 

  50. Zhai WG, Zhou W, Nai S. Grain refinement and strengthening of 316L stainless steel through addition of TiC nanoparticles and selective laser melting. Mater Sci Eng, A. 2022;832:142460. https://doi.org/10.1016/j.msea.2021.142460.

    Article  CAS  Google Scholar 

  51. Cheng W, Liu YN, Xiao XJ, Huang B, Zhou ZG, Liu XH. Microstructure and mechanical properties of a novel (TiB2+TiC)/AlSi10Mg composite prepared by selective laser melting. Mater Sci Eng, A. 2022;834:142435. https://doi.org/10.1016/j.msea.2021.142435.

    Article  CAS  Google Scholar 

  52. Xu W, Xin YC, Zhang B, Li XY. Stress corrosion cracking resistant nanostructured Al-Mg alloy with low angle grain boundaries. Acta Mater. 2022;225:117607. https://doi.org/10.1016/j.actamat.2021.117607.

    Article  CAS  Google Scholar 

  53. Li S, Chen NJ, Rohatgi A, Li YL, Powell C, Mathaudhu S, Devaraj A, Hu SY, Wang CM. Nanotwin assisted reversible formation of low angle grain boundary upon reciprocating shear load. Acta Mater. 2022;230:117850. https://doi.org/10.1016/j.actamat.2022.117850.

    Article  CAS  Google Scholar 

  54. Lim AT, Srolovitz DJ, Haataja M. Low-angle grain boundary migration in the presence of extrinsic dislocations. Acta Mater. 2009;57(17):5013. https://doi.org/10.1016/j.actamat.2009.07.003.

    Article  CAS  Google Scholar 

  55. Yang ZZ, Xu WC, Zhang WQ, Chen Y, Shan DB. Effect of power spinning and heat treatment on microstructure evolution and mechanical properties of duplex low-cost titanium alloy. J Mater Sci Technol. 2023;136:121. https://doi.org/10.1016/j.jmst.2022.07.022.

    Article  CAS  Google Scholar 

  56. Sun ZJ, Ma Y, Ponge D, Zaefferer S, Jägle E, Gault B, Rollett A, Raabe D. Thermodynamics-guided alloy and process design for additive manufacturing. Nat Commun. 2022;13(1):4361. https://doi.org/10.1038/s41467-022-31969-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tian MK, Choundraj J, Voisin T, Wang Y, Kacher J. Discovering the nanoscale origins of localized corrosion in additive manufactured stainless steel 316L by liquid cell transmission electron microscope. Corros Sci. 2022;208:110659. https://doi.org/10.1016/j.corsci.2022.110659.

    Article  CAS  Google Scholar 

  58. Prasad K, Obana M, Ito A, Torizuka S. Synchrotron diffraction characterization of dislocation density in additively manufactured IN 718 superalloy. Mater Charact. 2021;179:111379. https://doi.org/10.1016/j.matchar.2021.111379.

    Article  CAS  Google Scholar 

  59. Fu J, Li H, Song X, Fu MW. Multi-scale defects in powder-based additively manufactured metals and alloys. J Mater Sci Technol. 2022;122:165. https://doi.org/10.1016/j.jmst.2022.02.015.

    Article  CAS  Google Scholar 

  60. Gao SB, Hu ZH, Duchamp M, Krishnan P, Tekumalla S, Song X, Seita M. Recrystallization-based grain boundary engineering of 316L stainless steel produced via selective laser melting. Acta Mater. 2020;200:366. https://doi.org/10.1016/j.actamat.2020.09.015.

    Article  CAS  Google Scholar 

  61. Xue L, Atli KC, Zhang C, Hite N, Srivastava A, Leff AC, Wilson AA, Sharar DJ, Elwany A, Arroyave R, Karaman I. Laser powder bed fusion of defect-free niti shape memory alloy parts with superior tensile superelasticity. Acta Mater. 2022;229:117781. https://doi.org/10.1016/j.actamat.2022.117781.

    Article  CAS  Google Scholar 

  62. Lu HZ, Chen T, Liu LH, Wang H, Luo X, Song CH, Wang Z, Yang C. Constructing function domains in NiTi shape memory alloys by additive manufacturing. Virtual Phys Prototyp. 2022;17(3):563. https://doi.org/10.1080/17452759.2022.2053821.

    Article  Google Scholar 

  63. Gu DD, Ma CL, Dai DH, Yang JK, Lin KJ, Zhang HM, Zhang H. Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness. Virtual Phys Prototyp. 2021;16(S1):S19. https://doi.org/10.1080/17452759.2021.1892389.

    Article  Google Scholar 

  64. Zhang QQ, Hao SJ, Liu YT, Xiong ZW, Guo WQ, Yang Y, Ren Y, Cui LS, Ren LQ, Zhang ZH. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability. Appl Mater Today. 2020;19:100547. https://doi.org/10.1016/j.apmt.2019.100547.

    Article  Google Scholar 

  65. Nes E. The mechanism of repeated precipitation on dislocations. Acta Metall. 1974;22(1):81. https://doi.org/10.1016/0001-6160(74)90127-8.

    Article  CAS  Google Scholar 

  66. Hirth JP. Theory of Dislocations. 2nd ed. New York: Wiley; 1982.1.

    Google Scholar 

  67. Ma ZY, Chen YX, Ren Y, Yu KY, Jiang DQ, Liu YN, Cui LS. In-situ synchrotron high energy X-ray diffraction study of spontaneous reorientation of R phase upon cooling in nanocrystalline Ti50Ni45.5Fe4.5 alloy. Rare Met. 2022;41(6):1948. https://doi.org/10.1007/s12598-022-02001-5.

    Article  CAS  Google Scholar 

  68. Lai YZ, Wang K, Lv C, Hou HL, Zhao XQ. Strain glass transition in Ni47.5+xTi50-xFe2.5 alloys. J Alloys Compd. 2022. https://doi.org/10.1016/j.jallcom.2022.167387.

  69. Marquina M, Jiménez M, Marquina V, Aburto S, Ridaura R, Gómez R, Escudero R, Ríos-Jara D. Structural transitions in a TiNiFe shape memory alloy. Mater Charact. 1994;32(3):189. https://doi.org/10.1016/1044-5803(94)90088-4.

    Article  CAS  Google Scholar 

  70. Mañosa L, Planes A. Materials with giant mechanocaloric effects: cooling by strength. Adv Mater. 2017;29(11):1603607. https://doi.org/10.1002/adma.201603607.

  71. Wang X, Kustov S, Li K, Schryvers D, Verlinden B, Van Humbeeck J. Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti–50.8 at.% Ni alloy with micron-sized grains. Acta Mater. 2015;82:224. https://doi.org/10.1016/j.actamat.2014.09.018.

    Article  CAS  Google Scholar 

  72. Liu S, Lin Y, Wang GC, Wang XB. Effect of varisized Ni4Ti3 precipitate on the phase transformation behavior and functional stability of Ti-508 at% Ni alloys. Mater Charact. 2021;172:110832. https://doi.org/10.1016/j.matchar.2020.110832.

  73. Li Z, Xiao F, Chen H, Hou RH, Cai XR, Jin XJ. Atomic scale modeling of the coherent strain field surrounding Ni4Ti3 precipitate and its effects on thermally-induced martensitic transformation in a NiTi alloy. Acta Mater. 2021;211:116883. https://doi.org/10.1016/j.actamat.2021.116883.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52201225), the Post-doctoral Foundation Project of Shenzhen Polytechnic (No. 6021330013K0), the Additive Manufacturing Technology R&D Center (No. 602331004PQ), Guangdong Provincial General University Innovation Team Project (No. 2020KCXTD047), Shenzhen Science and Technology Innovation Commission (No. JSGG20200701095008016), Shenzhen Science and Technology Program (No. RCBS20221008093241051) and the Natural Science Foundation of Guangdong Province (No. 2022A1515110389). The authors would like to thank Dr. Xiang-Qi Wang from Jihua Laboratory Testing Center for the guidance on the X-CT experiments in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 82 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Ge, JG., Zhang, L. et al. Laser powder bed fusion of NiTiFe shape memory alloy via pre-mixed powder: microstructural evolution, mechanical and functional properties. Rare Met. 43, 2300–2316 (2024). https://doi.org/10.1007/s12598-023-02604-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02604-6

Keywords

Navigation