Skip to main content
Log in

Single-atom Rh catalysts for efficiently degrading Rhodamine B with high concentration

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Highly concentrated dye wastewater has a serious effect on the quality of natural waters; thus, developing novel catalysts to degrade dyes rapidly and efficiently is of great significance. For the first time, this study reports an Rh single atom loaded on a nitrogen-doped carbon (SA-Rh/CN) catalyst. This catalyst exhibits an excellent processing capacity for high concentrations of Rhodamine B (RhB), high catalytic activity (95.7% degradation of RhB in 60 min) and excellent stability (93.5% degradation efficiency after 10 stable runs), all over a wide range of pH values (effective from pH 3 to 9), for the degradation of RhB. Using free radical capture experiments, SA-Rh/CN was confirmed to catalyse peroxymonosulphate to produce SO4· and ·OH, which played important roles in the degradation of RhB. When SA-Rh/CN was generalised for the catalytic degradation of methylene blue, it also achieved excellent performance. Therefore, this study widens the applications of single-atom catalysts for Fenton-like reactions and demonstrates the potential of single-atom Rh catalysts in wastewater treatment.

Graphical abstract

摘要

高浓度染料废水严重影响天然水的水质, 因此开发新型催化剂快速高效地降解染料具有重要意义。本文报道了一种Rh单原子负载氮掺杂碳(SA-Rh/CN)催化剂, 首次发现该催化剂具有高浓度罗丹明B的处理能力、催化活性高(60分钟罗丹明B降解效率为95.7%)、稳定性强(稳定运行10次后降解效率保持93.5%)、降解罗丹明B的pH范围广(pH 3–9有效)等特点。实验证明, SA-Rh/CN催化PMS生成SO4和•OH, 在罗丹明B的降解中发挥了重要作用。将SA-Rh/CN推广到亚甲基蓝的催化降解中, 也取得了优异的性能。因此, 本研究拓宽了单原子催化剂在类芬顿反应中的应用, 并展示了单原子Rh催化剂在废水处理中的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Chen L, Yang ZC, Qian JS, Pan BC. Interaction between organic compounds and catalyst steers the oxidation pathway and mechanism in the iron oxide-based heterogeneous Fenton system. Environ Sci Technol. 2022;56(19):14059. https://doi.org/10.1021/acs.est.2c04557.

    Article  CAS  PubMed  Google Scholar 

  2. Meyerstein D. Re-examining Fenton and Fenton-like reactions. Nat Rev Chem. 2021;5(9):595. https://doi.org/10.1038/s41570-021-00310-4.

    Article  CAS  PubMed  Google Scholar 

  3. Wang S, Xie LB, Li Y, Shang DH, Zheng WW, Zhan SH. Unraveling reactive oxygen species formation mechanism of fenton catalyst and its application in environ-mental treatment. Chin J Rare Met. 2022;46(6):707. https://doi.org/10.13373/j.cnki.cjrm.XY21100033.

    Article  Google Scholar 

  4. Chen TX, Yao TT, Pan H, Peng H, Whittaker AK, Li Y, Zhu SM, Wang ZY. One-step nanoarchitectonics of a multiple functional hydrogel based on cellulose nanocrystals for effective tumor therapy. Nano Res. 2022;15(9):8636. https://doi.org/10.1007/s12274-022-4455-7.

    Article  CAS  Google Scholar 

  5. Yang N, Zhang T, Cao CY, Mao GX, Shao JJ, Song XJ, Wang WJ, Mou XZ, Dong XC. BSA stabilized photothermal-fenton reactor with cisplatin for chemo/chemodynamic cascade oncotherapy. Nano Res. 2022;15(3):2235. https://doi.org/10.1007/s12274-021-3758-4.

    Article  CAS  Google Scholar 

  6. Audino F, Conte LO, Schenone AV, Pérez-Moya M, Graells M, Alfano OM. A kinetic study for the Fenton and photo-Fenton paracetamol degradation in an annular photoreactor. Environ Sci Pollut Res. 2019;26(5):4312. https://doi.org/10.1007/s11356-018-3098-4.

    Article  CAS  Google Scholar 

  7. Zhang LS, Jiang XH, Zhong ZA, Tian L, Sun Q, Cui YT, Lu X, Zou JP, Luo SL. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100 % selectivity. Angew Chem Int Ed. 2021;60(40):21751. https://doi.org/10.1002/anie.202109488.

    Article  CAS  Google Scholar 

  8. Guo Z, Xie YB, Xiao JD, Zhao ZJ, Wang YX, Xu ZM, Zhang Y, Yin LC, Cao HB, Gong JL. Single-atom Mn–N4 Site-Catalyzed Peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J Am Chem Soc. 2019;141(30):12005. https://doi.org/10.1021/jacs.9b04569.

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Chen L, Zhao H, Kumar P, Larter SR, Kibria MG, Hu JG. In situ photo-fenton-like tandem reaction for selective Gluconic acid production from glucose photo-oxidation. ACS Catal. 2023;13(4):2637. https://doi.org/10.1021/acscatal.2c05931.

    Article  CAS  Google Scholar 

  10. Sun Q, Wu SH, You D, Zang T, Dong LF. Novel composite functional photocatalytic fuel cell assisted by Fenton-like reactions. Appl Surf Sci. 2019;467:825. https://doi.org/10.1016/j.apsusc.2018.10.188.

    Article  CAS  Google Scholar 

  11. Shi Q, Wang JJ, Chen L, Peng Z, Zeng QH, Zhu Y, Zhao Y. Fenton reaction-assisted photodynamic inactivation of calcined melamine sponge against Salmonella and its application. Food Res Int. 2022;151:110847. https://doi.org/10.1016/j.foodres.2021.110847.

    Article  CAS  PubMed  Google Scholar 

  12. Gao ST, Han Y, Fan M, Li ZH, Ge K, Liang XJ, Zhang JC. Metal-organic framework-based nanocatalytic medicine for chemodynamic therapy. Sci China Mater. 2022;63(12):2429. https://doi.org/10.1007/s40843-020-1513-8.

    Article  CAS  Google Scholar 

  13. Gayathri M, Kumar DR, Satheeshkumar E, Manoj D, Kumaresan A, Arun A, Jayaprakash N, Sundaravadivel E. Enhanced visible-light-driven photocatalytic and dielectric properties of inorganic–organic hybrid (NiO-g-C3N4) nanocomposite for degradation of rhodamine blue. J Mater Sci Mater Electron. 2022;33(14):10965. https://doi.org/10.1007/s10854-022-08076-1.

    Article  CAS  Google Scholar 

  14. An SF, Zhang GH, Wang TW, Zhang WN, Li KY, Song CS, Miller JT, Miao S, Wang JH, Guo XW. High-density ultra-small clusters and single-atom Fe embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano. 2018;12(9):9441. https://doi.org/10.1021/acsnano.8b04693.

    Article  CAS  PubMed  Google Scholar 

  15. Shi JH, Ju CK, Nie JH, Wang H, Yang TT, Pu KK, Shi JT, Zhao T. Efficient removal of high-concentration dye pollutants in wastewater using composite photocatalyst NH2-MIL-125 (Ti)/g-C3N4 nanosheets under visible light. ECS J Solid State SC. 2022;11(12):123012. https://doi.org/10.1149/2162-8777/acaebb.

    Article  Google Scholar 

  16. Xie MS, Dai FF, Li J, Dang XY, Guo JN, Lv WQ, Zhang Z, Lu XQ. Tailoring the electronic metal-support interactions in supported atomically dispersed gold catalysts for efficient fenton-like reaction. Angew Chem Int Ed. 2021;60(26):14370. https://doi.org/10.1002/anie.202103652.

    Article  CAS  Google Scholar 

  17. Li XQ, Feng S, Yang J, Xie TP, Wang JK, Chen XJ, Kong DS, Chen HY. Tetracycline removal by a magnetic heterojunction Cu2O/CoFe2O4 activating peroxymonosulfate. Rare Met. 2023;42(3):862. https://doi.org/10.1007/s12598-022-02170-3.

    Article  CAS  Google Scholar 

  18. Wang QL, Ji FT, Wang SJ, Zhang L. Accelerating the fenton reaction with a magnetic microswarm for enhanced water remediation. Chem Nano Mat. 2021;7(6):600. https://doi.org/10.1002/cnma.202100108.

    Article  CAS  Google Scholar 

  19. Yang ZC, Qian JS, Yu AQ, Pan BC. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc Natl Acad Sci USA. 2019;116(14):6659. https://doi.org/10.1073/pnas.1819382116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen L, He XX, Gong ZH, Li JL, Liao Y, Li XT, Ma J. Significantly improved photocatalysis-self-Fenton degradation performance over g-C3N4 via promoting Fe(III)/Fe(II) cycle. Rare Met. 2022;41(7):2429. https://doi.org/10.1007/s12598-022-01963-w.

    Article  CAS  Google Scholar 

  21. Xu T, Long YP, He C, Song X, Zhao WF, Zhao CS. Construction of dual-carbon-confined metal sulfide nanocrystals via bio-mimetic reactors enabling superior Fenton-like catalysis. J Mater Chem A. 2021;9(40):22994. https://doi.org/10.1039/D1TA04831G.

    Article  CAS  Google Scholar 

  22. Vála L, Medlín R, Koštejn M, Karatodorov S, Jandová V, Vavruňková V, Křenek T. Laser-induced reactive deposition of nanostructured CoS2- and Co2CuS4-based films with Fenton catalytic properties. Eur J Inorg Chem. 2019;9:1220. https://doi.org/10.1002/ejic.201801403.

    Article  CAS  Google Scholar 

  23. Ma JM, Liu XF, Wang RW, Zhang F, Tu GL. Plasmon-induced near-field and resonance energy transfer enhancement of photodegradation activity by Au wrapped CuS dual-chain. Nano Res. 2022;15(6):5671. https://doi.org/10.1007/s12274-022-4129-5.

    Article  CAS  Google Scholar 

  24. Li GM, Qiu S, Ma F, Ji YW, Jiang XF. Degradation of RhB by a sono-Fenton-like process with an iron-foam in the presence of oxalic acid. Anal Methods. 2018;10(32):3976. https://doi.org/10.1039/C8AY00839F.

    Article  CAS  Google Scholar 

  25. Liu X, Huang WY, Zhou Q, Chen XR, Yang K, Li D, Dionysiou DD. Ag-decorated 3D flower-like Bi2MoO6/rGO with boosted photocatalytic performance for removal of organic pollutants. Rare Met. 2021;40(5):1086. https://doi.org/10.1007/s12598-020-01574-3.

    Article  CAS  Google Scholar 

  26. Sun ZY, Wei YJ, Cao T, Liu Z, Sui R, Li X, Pei JJ, Chen Z, Wang S. Natural keratin-based Fe-S1N3 single atom catalyst for insights into the coordination regulation effect of Fenton-like catalysis with high efficiency. Nano Res. 2023. https://doi.org/10.1007/s12274-023-5661-7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gan T, Wang DS. Atomically dispersed materials: ideal catalysts in atomic era. Nano Res. 2023. https://doi.org/10.1007/s12274-023-5700-4.

    Article  Google Scholar 

  28. Hülsey MJ, Sun G, Sautet P, Yan N. Observing single-atom catalytic sites during reactions with electrospray ionization mass spectrometry. Angew Chem Int Ed. 2021;60(9):4764. https://doi.org/10.1002/anie.202011632.

    Article  CAS  Google Scholar 

  29. Wang Y, Wu J, Tang SH, Yang JR, Ye CL, Chen J, Lei YP, Wang DS. Synergistic Fe−Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew Chem Int Ed. 2023;62(15):e202219191.

    Article  CAS  Google Scholar 

  30. Ma RZ, Li QH, Yan J, Tao Y, Hu SY, Liu DH, Gong JX, Xiong Y. Thermodynamically controllable synthesis of ZIF-8 exposing different facets and their applications in single atom catalytic oxygen reduction reactions. Nano Res. 2023;16:9618. https://doi.org/10.1007/s12274-023-5655-5.

    Article  CAS  Google Scholar 

  31. Zhao MQ, Liu HR, Zhang HW, Chen W, Sun HQ, Wang ZH, Zhang B, Song L, Yang Y, Ma C, Han YH, Huang W. A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries. Energy Environ Sci. 2021;14(12):6455. https://doi.org/10.1039/D1EE01602D.

    Article  CAS  Google Scholar 

  32. Guan JP, Wang M, Ma RZ, Liu Q, Sun XT, Xiong Y, Chen XQ. Single-atom Rh nanozyme: an efficient catalyst for highly sensitive colorimetric detection of acetylcholinesterase activity and adrenaline. Sens Actuators B Chem. 2023;375:132972.

    Article  CAS  Google Scholar 

  33. Zheng HR, Wang SB, Liu SJ, Wang QC, Guan JP, Wu J, Wang YC, Yu Tao HuSY, Xiong X, Xiong Y, Lei YP. The heterointerface between Fe1/NC and selenide boosts reversible oxygen electrocatalysis. Adv Funct Mater. 2023;23(40):2300815.

    Article  Google Scholar 

  34. Xiong Y, Li HC, Liu CW, Zheng LR, Liu C, Wang JO, Liu SJ, Han YH, Gu L, Qian JS, Wang DS. Single-atom Fe catalysts for Fenton-like reactions: roles of different N species. Adv Mater. 2022;34(17):2110653. https://doi.org/10.1002/adma.202110653.

    Article  CAS  Google Scholar 

  35. Cheng C, Ren W, Miao F, Chen XT, Chen XX, Zhang H. Generation of FeIV=O and its contribution to Fenton-like reactions on a single-atom iron−N−C catalyst. Angew Chem Int Ed. 2023;62(10):e202218510. https://doi.org/10.1002/anie.202218510.

    Article  CAS  Google Scholar 

  36. Li Y, Yang T, Qiu SH, Lin WQ, Yan JT, Fan SS, Zhou Q. Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species. Chem Eng J. 2020;389: 124382. https://doi.org/10.1016/j.cej.2020.124382.

    Article  CAS  Google Scholar 

  37. Qian MY, Wu XL, Lu MC, Huang LZ, Li WX, Lin HJ, Chen JR, Wang SB, Duan XG. Modulation of charge trapping by island-like single-atom cobalt catalyst for enhanced photo-Fenton-like reaction. Adv Funct Mater. 2023;33(12):2208688. https://doi.org/10.1002/adfm.202208688.

    Article  CAS  Google Scholar 

  38. Liang XY, Wang D, Zhao ZY, Li T, Gao YW, Hu C. Coordination number dependent catalytic activity of single-atom cobalt catalysts for Fenton-like reaction. Adv Funct Mater. 2022;32(38):2203001. https://doi.org/10.1002/adfm.202203001.

    Article  CAS  Google Scholar 

  39. Li XN, Huang X, Xi SB, Miao S, Ding J, Cai WZ, Liu S, Yang XL, Yang HB, Gao JJ, Wang JH, Huang YQ, Zhang T, Liu B. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J Am Chem Soc. 2018;140(39):12469. https://doi.org/10.1021/jacs.8b05992.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu Y, Wang WY, Cheng JJ, Qu YT, Dai Y, Liu MM, Yu JN, Wang CM, Wang HJ, Wang SC, Zhao C, Wu Y, Liu YZ. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew Chem Int Ed. 2021;60(17):9480. https://doi.org/10.1002/anie.202017152.

    Article  CAS  Google Scholar 

  41. Yang JR, Zeng DQ, Zhang QG, Cui RF, Hassan MH, Dong LQ, Li J, He YL. Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants. Appl Catal B. 2020;279:119363. https://doi.org/10.1016/j.apcatb.2020.119363.

    Article  CAS  Google Scholar 

  42. Yin KX, Peng LJ, Chen DD, Liu SY, Zhang YJ, Gao BY, Fu KF, Shang YN, Xu X. High-loading of well dispersed single-atom catalysts derived from Fe-rich marine algae for boosting Fenton-like reaction: role identification of iron center and catalytic mechanisms. Appl Catal B. 2023;336:122951. https://doi.org/10.1016/j.apcatb.2023.122951.

    Article  CAS  Google Scholar 

  43. Zou YX, Li J, Tan J, Lyu L, Li SY, Wang YH, Lu Y, Zhu XB, Zhang TT. High-valent cobalt-oxo species triggers singlet oxygen for rapid contaminants degradation along with mild peroxymonosulfate decomposition in single Co atom-doped g-C3N4. Chem Eng J. 2023;471:144531. https://doi.org/10.1016/j.cej.2023.144531.

    Article  CAS  Google Scholar 

  44. Wang FQ, Zhang WL, Wan HB, Li CX, An WK, Sheng X, Liang XY, Wang XP, Ren YL, Zheng X, Lv DC, Qin YC. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. Chin Chem Lett. 2022;33:2259. https://doi.org/10.1016/j.cclet.2021.08.074.

    Article  CAS  Google Scholar 

  45. Qin YC, Zhang WL, Wang FQ, Li JJ, Ye JY, Sheng X, Li CX, Liang XY, Liu P, Wang XP, Zheng X, Ren YL, Xu CL, Zhang ZC. Extraordinary p–d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C−C bond cleavage of ethylene glycol electrooxidation. Angew Chem Int Ed. 2022;61:e202200899. https://doi.org/10.1002/anie.202200899.

    Article  CAS  Google Scholar 

  46. Liu Y, Chen N, Li WD, Sun MZ, Wu T, Huang BL, Yong X, Zhang QH, Gu L, Song HQ, Bauer R, Tse JS, Zang SQ, Yang B, Lu SY. Engineering the synergistic effect of carbon dots-stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. Smart Mat. 2022;3:249. https://doi.org/10.1002/smm2.1067.

    Article  CAS  Google Scholar 

  47. Yamada R, Iwasawa N, Takaya J. Rhodium-catalyzed C−H activation enabled by an indium metalloligand. Angew Chem Int Ed. 2019;58(48):17251. https://doi.org/10.1002/anie.201910197.

    Article  CAS  Google Scholar 

  48. Li HY, Xiong CY, Fei MC, Ma L, Zhang HN, Yan XX, Tieu P, Yuan YC, Zhang YH, Nyakuchena J, Huang J, Pan XQ, Waegele MM, Jiang DE, Wang DW. Selective formation of acetic acid and methanol by direct methane oxidation using rhodium single-atom catalysts. J Am Chem Soc. 2023;145(20):11415. https://doi.org/10.1021/jacs.3c03113.

    Article  CAS  PubMed  Google Scholar 

  49. Kang SB, Han SJ, Nam IS, Cho BK, Kim CH, Oh SH. Detailed reaction kinetics for double-layered Pd/Rh bimetallic TWC monolith catalyst. Chem Eng J. 2014;241:273. https://doi.org/10.1016/j.cej.2013.12.039.

    Article  CAS  Google Scholar 

  50. Kang SB, Nam IS, Cho BK, Kim CH, Oh SH. Kinetic model for modern double-layered Pd/Rh TWC as a function of metal loadings and mileage. Chem Eng J. 2015;278:328. https://doi.org/10.1016/j.cej.2014.12.106.

    Article  CAS  Google Scholar 

  51. Zhang ML, Luo WJ, Li ZS, Yu T, Zou ZG. Surface modification of hematite photoanode films with rhodium. Rare Met. 2011;30(1):38. https://doi.org/10.1007/s12598-011-0233-5.

    Article  CAS  Google Scholar 

  52. Guo XJ, Zhang Q, Li YN, Chen Y, Yang L, He HY, Xu XT, Huang HJ. Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction. Rare Met. 2022;41(6):2108. https://doi.org/10.1007/s12598-021-01882-2.

    Article  CAS  Google Scholar 

  53. Xiong Y, Dong JC, Huang ZQ, Xin PY, Chen WX, Wang Y, Li Z, Jin Z, Xing W, Zhuang BZ, Ye JY, Wei X, Cao R, Gu L, Sun SG, Zhuang L, Chen XQ, Yang H, Chen C, Peng Q, Chang CR, Wang DS, Li YD. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat Nanotechnol. 2020;15(5):390. https://doi.org/10.1038/s41565-020-0665-x.

    Article  CAS  PubMed  Google Scholar 

  54. Lu BX, Xiao TL, Xu YL, Diao XG, Zhai J. Kinetic process of an alkaline earth metal ion transmembrane through ZIF-8. J Phys Chem Lett. 2021;12(23):5587. https://doi.org/10.1021/acs.jpclett.1c01469.

    Article  CAS  PubMed  Google Scholar 

  55. Liu JH, Zhang TK, Wang ZC, Dawson G, Chen W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem. 2011;21(38):14398. https://doi.org/10.1039/C1JM12620B.

    Article  CAS  Google Scholar 

  56. Lazar P, Mach R, Otyepka M. Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. J Phys Chem C. 2019;123(16):10695. https://doi.org/10.1021/acs.jpcc.9b02163.

    Article  CAS  Google Scholar 

  57. Ravel B, Newville M, Athena A. Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiait. 2005;12:537. https://doi.org/10.1107/S0909049505012719.

    Article  CAS  Google Scholar 

  58. Funke H, Chukalina M, Rossberg A. Wavelet analysis of extended X-ray absorption fine structure data. Phys Scr. 2005;T115:232. https://doi.org/10.1238/Physica.Topical.115a00232.

    Article  CAS  Google Scholar 

  59. Hu JH, Li Y, Zou YB, Lin L, Li B, Li XY. Transition metal single-atom embedded on N-doped carbon as a catalyst for peroxymonosulfate activation: a DFT study. Chem Eng J. 2022;437: 135428. https://doi.org/10.1016/j.cej.2022.135428.

    Article  CAS  Google Scholar 

  60. Song CL, Zhan Q, Liu F, Wang C, Li HC, Wang X, Guo XF, Cheng YC, Sun W, Wang L, Qian JS, Pan BC. Overturned loading of inert CeO2 to Active Co3O4 for unusually improved catalytic activity in Fenton-like reactions. Angew Chem Int Ed. 2022;61(16):e202200406. https://doi.org/10.1002/anie.202200406.

    Article  CAS  Google Scholar 

  61. Li SQ, Hou YJ, Chen QM, Zhang XD, Cao HY, Huang YM. Promoting active sites in MOF-derived homobimetallic hollow nanocages as a high-performance multifunctional nanozyme catalyst for biosensing and organic pollutant degradation. ACS Appl Mater Interfaces. 2020;12(2):2581. https://doi.org/10.1021/acsami.9b20275.

    Article  CAS  PubMed  Google Scholar 

  62. Shi YB, Wang XB, Liu XF, Ling CC, Shen WJ, Zhang LZ. Visible light promoted Fe3S4 Fenton oxidation of atrazine. Appl Catal B. 2020;277:119229. https://doi.org/10.1016/j.apcatb.2020.119229.

    Article  CAS  Google Scholar 

  63. Shi YB, Yang ZP, Shi LJ, Li H, Liu XP, Zhang X, Cheng JD, Liang C, Cao SY, Guo FR, Liu X, Ai ZH, Zhang LZ. Surface boronizing can weaken the excitonic effects of BiOBr nanosheets for efficient O2 activation and selective NO oxidation under visible light irradiation. Environ Sci Technol. 2022;56(20):14478. https://doi.org/10.1021/acs.est.2c03769.

    Article  CAS  PubMed  Google Scholar 

  64. Shi Y, Zhang C, Yang Z, Liu X, Zhang X, Ling C, Cheng J, Liang C, Mao C, Zhang L. Interfacial electrostatic field boosted exciton dissociation of phosphorylated BiOBr for efficient O2 activation and chlorobenzene degradation. J Phys Chem C. 2022;126(51):21847.

    Article  CAS  Google Scholar 

  65. Gao YW, Zhu Y, Li T, Chen ZH, Jiang QK, Zhao ZY, Liang XY, Hu C. Unraveling the high-activity origin of single-atom iron catalysts for organic pollutant oxidation via peroxymonosulfate activation. Environ Sci Technol. 2021;55(12):8318. https://doi.org/10.1021/acs.est.1c01131.

    Article  CAS  PubMed  Google Scholar 

  66. Peng XM, Wu JQ, Zhao ZL, Wang X, Dai HL, Xu L, Xu GP, Jian Y, Hu FP. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: role of high-valent iron-oxo species and Fe–Nx sites. Chem Eng J. 2022;427:130803. https://doi.org/10.1016/j.cej.2021.130803.

    Article  CAS  Google Scholar 

  67. Mi XY, Wang PF, Xu SZ, Su L, Zhong H, Wang HT, Li Y, Zhan SH. Almost 100 % peroxymonosulfate conversion to singlet oxygen on single-atom CoN2+2 sites. Angew Chem Int Ed. 2021;60(9):4588. https://doi.org/10.1002/anie.202014472.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22102218), the Science and Technology Innovation Program of Hunan Province (No. 2022RC1110) and the Young Elite Scientists Sponsorship Program by CAST (No. 2022QNRC001). We thank the BL11B station at Shanghai Synchrotron Radiation Facility (SSRF) for XAFS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Xiong.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2977 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, SY., Guan, JP., Ma, RZ. et al. Single-atom Rh catalysts for efficiently degrading Rhodamine B with high concentration. Rare Met. 43, 2331–2338 (2024). https://doi.org/10.1007/s12598-023-02589-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02589-2

Navigation