Skip to main content
Log in

π-conjugated chromophore functionalized high-nuclearity titanium-oxo clusters containing structural unit of anatase for photocatalytic selective oxidation of sulfides

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

N-doping has significant influence in manipulating the properties of TiO2, and this has stimulated the development of N-donor-functionalized titanium-oxo clusters (TOCs) as molecular models to study the structure–property relationship. However, the structural type and photoresponsive application are still limited for such TOCs, especially regarding the high-nuclearity TOCs that contain structure unit of TiO2 for photocatalysis. Herein, we showed the synthesis of a series of high-nuclearity TOCs 1–3 compounds using π-conjugated 1,10-phenanthroline (phen) as chromophore and N-donor functional ligand. Compound 1 features cocrystal structure composed of one [Ti26]2+ and half [Ti22]2+, which renders it as the first cocrystallized TOC containing two positively charged species and phen-functionalized TOC showing the highest nuclearity up to 37 Ti centers. By adjusting the synthetic conditions, the individual {Ti22} and {Ti26} clusters can also be isolated as Compounds 2 and 3, respectively. The core structure of {Ti22} is mainly constructed from four lacunary {Ti4} derived from pentagonal {Ti(Ti)5} unit, while {Ti26} is built from four complete {Ti(Ti)5} unit. Notably, a {Ti8O14} structure unit of anatase TiO2 can be identified in {Ti26}. Based on the unique structural features and proper photophysical and photochemical properties of Compounds 1–3, they are applied for photocatalytic sulfoxidation. Owing to the presence of anatase structure unit in {Ti26} and the synergistic effect from {Ti22} and {Ti26}, the catalytic performance presents in the order of Compound 1 > Compound 3 > Compound 2. This work provides excellent models to understand the structure–property relationship from the perspective of cocrystallization and Ti–O binding model and will further promote the application of TOCs as functional catalysts for organic transformation.

Graphical abstract

摘要

氮掺杂对TiO2的性质调控有很重要的影响, 这也促进了以含氮配体修饰的钛氧簇(TOCs)作为分子模型研究其构效关系。然而, 对于此类TOCs的结构类型和光响应应用的报道非常有限, 尤其是将含有TiO2结构单元的高核TOCs用于光催化更是鲜有报道。本文以p-共轭1,10-邻菲啰啉作为生色团和含氮功能化配体构建得到了3例高核钛氧簇, 命名为化合物1-3。化合物1由1个[Ti26]2+和0.5个[Ti22]2+共晶构成, 是首例由两个阳离子型物种构成的共晶钛氧簇, 并且是邻菲啰啉修饰的钛氧簇中核数最高的。通过调控合成条件, {Ti22}、{Ti26}可以被独立合成出来, 即为化合物2和化合物3。化合物2的簇核结构由五边形{Ti(Ti)5}衍生的{Ti4}构建得到, 而化合物3则是由五边形{Ti(Ti)5}组装形成。更为重要的是, 从{Ti26}中可以分离出与锐钛矿型二氧化钛相同的构建单元{Ti8O14}。基于化合物1-3独特的结构及优异的光物理和光化学性质, 我们将其应用于硫醚的光催化氧化。基于光活性锐钛矿结构单元以及共晶组分间的协同作用, 化合物1显示出最佳催化性能, 其次是化合物3和化合物2。本工作从共结晶和Ti-O构建模式的角度为研究钛氧簇的构效关系提供了很好的分子模型, 并将进一步推动钛氧簇作为高效催化剂用于有机转化。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Park JY. How titanium dioxide cleans itself. Science. 2018;361(6404):753. https://doi.org/10.1126/science.aau6016.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Dahl M, Liu Y, Yin Y. Composite titanium dioxide nanomaterials. Chem Rev. 2014;114(19):9853. https://doi.org/10.1021/cr400634p.

    Article  CAS  PubMed  Google Scholar 

  3. Qiu JY, Feng HZ, Chen ZH, Ruan SH, Chen YP, Xu TT, Su JY, Ha EN, Wang LY. Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation. Rare Met. 2022;41(6):2074. https://doi.org/10.1007/s12598-021-01929-4.

    Article  CAS  Google Scholar 

  4. Tian A, Shi XG, Tan HC, Li BX, Ma JW, Yang H. Preparation and photocatalytic properties of Ni doped TiO2 nanotube. Chin J Rare Met. 2021;45(1):41–6. https://doi.org/10.13373/j.cnki.cjrm.xy19060015.

    Article  CAS  Google Scholar 

  5. Zhang L, Fan X, Yi X, Lin X, Zhang J. Coordination-delayed-hydrolysis method for the synthesis and structural modulation of titanium-oxo clusters. Acc Chem Res. 2022;55(21):3150. https://doi.org/10.1021/acs.accounts.2c00421.

    Article  CAS  PubMed  Google Scholar 

  6. Coppens P, Chen Y, Trzop E. Crystallography and properties of polyoxotitanate nanoclusters. Chem Rev. 2014;114(19):9645. https://doi.org/10.1021/cr400724e.

    Article  CAS  PubMed  Google Scholar 

  7. Fang WH, Zhang L, Zhang J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem Soc Rev. 2018;47(2):404. https://doi.org/10.1039/c7cs00511c.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang G, Liu C, Long DL, Cronin L, Tung CH, Wang Y. Water-soluble pentagonal-prismatic titanium-oxo clusters. J Am Chem Soc. 2016;138(35):11097. https://doi.org/10.1021/jacs.6b06290.

    Article  CAS  PubMed  Google Scholar 

  9. Benedict JB, Freindorf R, Trzop E, Cogswell J, Coppens P. Large polyoxotitanate clusters: well-defined models for pure-phase TiO2 structures and surfaces. J Am Chem Soc. 2010;132(39):13669. https://doi.org/10.1021/ja106436y.

    Article  CAS  PubMed  Google Scholar 

  10. Lv Y, Cheng J, Steiner A, Gan L, Wright DS. Dipole-induced band-gap reduction in an inorganic cage. Angew Chem Int Ed. 2014;53(7):1934. https://doi.org/10.1002/anie.201307721.

    Article  CAS  Google Scholar 

  11. Molina PI, Kozma K, Santala M, Falaise C, Nyman M. Aqueous bismuth titanium-oxo sulfate cluster speciation and crystallization. Angew Chem Int Ed. 2017;56(51):16277. https://doi.org/10.1002/anie.201709539.

    Article  CAS  Google Scholar 

  12. Li N, Liu J, Liu JJ, Dong LZ, Li SL, Dong BX, Kan YH, Lan YQ. Self-assembly of a phosphate-centered polyoxo-titanium cluster: discovery of the heteroatom keggin family. Angew Chem Int Ed. 2019;58(48):17260. https://doi.org/10.1002/anie.201910491.

    Article  CAS  Google Scholar 

  13. Chen S, Chen ZN, Fang WH, Zhuang W, Zhang L, Zhang J. Ag10Ti28 -oxo cluster containing single-atom silver sites: atomic structure and synergistic electronic properties. Angew Chem Int Ed. 2019;58(32):10932. https://doi.org/10.1002/anie.201904680.

    Article  CAS  Google Scholar 

  14. Zhao C, Han YZ, Dai S, Chen X, Yan J, Zhang W, Su H, Lin S, Tang Z, Teo BK, Zheng N. Microporous cyclic titanium-oxo clusters with labile surface ligands. Angew Chem Int Ed. 2017;56(51):16252. https://doi.org/10.1002/anie.201709096.

    Article  CAS  Google Scholar 

  15. Gao MY, Wang F, Gu ZG, Zhang DX, Zhang L, Zhang J. Fullerene-like polyoxotitanium cage with high solution stability. J Am Chem Soc. 2016;138(8):2556. https://doi.org/10.1021/jacs.6b00613.

    Article  CAS  PubMed  Google Scholar 

  16. Fang WH, Zhang L, Zhang J. A 36 nm Ti52-oxo nanocluster with precise atomic structure. J Am Chem Soc. 2016;138(24):7480. https://doi.org/10.1021/jacs.6b03489.

    Article  CAS  PubMed  Google Scholar 

  17. Li N, Pranantyo D, Kang ET, Wright DS, Luo HK. In situ self-assembled polyoxotitanate cages on flexible cellulosic substrates: multifunctional coating for hydrophobic, antibacterial, and UV-blocking applications. Adv Funct Mater. 2018;28(23):1800345. https://doi.org/10.1002/adfm.201800345.

    Article  CAS  Google Scholar 

  18. Zheng H, Du MH, Lin SC, Tang ZC, Kong XJ, Long LS, Zheng LS. Assembly of a wheel-like Eu24Ti8 cluster under the guidance of high-resolution electrospray ionization mass spectrometry. Angew Chem Int Ed. 2018;57(34):10976. https://doi.org/10.1002/anie.201806757.

    Article  CAS  Google Scholar 

  19. Du MH, Xu SH, Li GJ, Xu H, Lin Y, Liu WD, Long LS, Zheng LS, Kong XJ. Modification of multi-component building blocks for assembling giant chiral lanthanide-titanium molecular rings. Angew Chem Int Ed. 2022;61(8):e202116296. https://doi.org/10.1002/anie.202116296.

    Article  CAS  Google Scholar 

  20. Chen RY, He YP, Zhang J. Combining Ti4(embonate)6 cages and [Pb4(OH)4]4+ clusters for enhanced third-order nonlinear optical property. Polyoxometalates. 2022;1(1):9140002. https://doi.org/10.26599/pom.2022.9140002.

    Article  Google Scholar 

  21. Chen W, Yi X, Zhang J, Zhang L. Heterometallic Mo–Ti oxo clusters with metal–metal bonds: preparation and visible-light absorption behaviors. Polyoxometalates. 2023;2(1):9140013. https://doi.org/10.26599/pom.2022.9140013.

    Article  Google Scholar 

  22. Liu YJ, Fang WH, Zhang L, Zhang J. Recent advances in heterometallic polyoxotitanium clusters. Coord Chem Rev. 2020;404:213099. https://doi.org/10.1016/j.ccr.2019.213099.

    Article  CAS  Google Scholar 

  23. Zhu QY, Dai J. Titanium oxo/alkoxyl clusters anchored with photoactive ligands. Coord Chem Rev. 2021;430:213664. https://doi.org/10.1016/j.ccr.2020.213664.

    Article  CAS  Google Scholar 

  24. Mo SD, Ching WY. Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys Rev B Condens Matter. 1995;51(19):13023. https://doi.org/10.1103/physrevb.51.13023.

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Hong ZF, Xu SH, Yan ZH, Lu DF, Kong XJ, Long LS, Zheng LS. A large titanium oxo cluster featuring a well-defined structural unit of rutile. Cryst Growth Des. 2018;18(9):4864. https://doi.org/10.1021/acs.cgd.8b00904.

    Article  CAS  Google Scholar 

  26. Fan X, Wang J, Wu K, Zhang L, Zhang J. Isomerism in titanium-oxo clusters: molecular anatase model with atomic structure and improved photocatalytic activity. Angew Chem Int Ed. 2019;131(5):1334. https://doi.org/10.1002/ange.201809961.

    Article  ADS  Google Scholar 

  27. Liu JX, Gao MY, Fang WH, Zhang L, Zhang J. Bandgap engineering of titanium-oxo clusters: labile surface sites used for ligand substitution and metal incorporation. Angew Chem Int Ed. 2016;55(17):5160. https://doi.org/10.1002/anie.201510455.

    Article  CAS  Google Scholar 

  28. Gao MY, Fang WH, Wen T, Zhang L, Zhang J. Connecting titanium-oxo clusters by nitrogen heterocyclic ligands to produce multiple cluster series with photocatalytic H2 evolution activities. Cryst Growth Des. 2017;17(7):3592. https://doi.org/10.1021/acs.cgd.7b00413.

    Article  CAS  Google Scholar 

  29. Fan X, Fu H, Zhang L, Zhang J. Pyrazole-thermal synthesis: a new approach towards N-rich titanium-oxo clusters with photochromic behaviors. Dalton Trans. 2019;48(23):8049. https://doi.org/10.1039/c9dt01628g.

    Article  CAS  PubMed  Google Scholar 

  30. Yu YZ, Zhang YR, Geng CH, Sun L, Guo Y, Feng YR, Wang YX, Zhang XM. Precise and wide-ranged band-gap tuning of Ti6-core-based titanium oxo clusters by the type and number of chromophore ligands. Inorg Chem. 2019;58(24):16785. https://doi.org/10.1021/acs.inorgchem.9b02951.

    Article  CAS  PubMed  Google Scholar 

  31. Liu JJ, Li N, Sun JW, Liu J, Dong LZ, Yao SJ, Zhang L, Xin ZF, Shi JW, Wang JX, Li SL, Lan YQ. Ferrocene-functionalized polyoxo-titanium cluster for CO2 photoreduction. ACS Catal. 2021;11(8):4510. https://doi.org/10.1021/acscatal.0c04495.

    Article  CAS  Google Scholar 

  32. Liu XX, Chen S, Fang WH, Zhang L, Zhang J. Amino-polyalcohol-solvothermal synthesis of titanium-oxo clusters: from Ti6 to Ti19 with structural diversity. Inorg Chem. 2019;58(11):7267. https://doi.org/10.1021/acs.inorgchem.9b00293.

    Article  CAS  PubMed  Google Scholar 

  33. Chaumont C, Mobian P, Henry M. An unprecedented high nuclearity catecholato-based Ti(IV)-architecture bearing labile pyridine ligands. Dalton Trans. 2014;43(9):3416. https://doi.org/10.1039/c3dt53424c.

    Article  CAS  PubMed  Google Scholar 

  34. Wang C, Chen N, Wang S, Kong F. Assembly of cyclic ferrocene-sensitized titanium-oxo clusters with excellent photoelectrochemical activity. Inorg Chem Front. 2022;9(21):5616. https://doi.org/10.1039/d2qi01007k.

    Article  CAS  Google Scholar 

  35. Han EM, Yu WD, Li LJ, Yi XY, Yan J, Liu C. Accurate assembly of ferrocene-functionalized Ti22Fc4 clusters with photocatalytic amine oxidation activity. Chem Commun (Camb). 2021;57(22):2792. https://doi.org/10.1039/d1cc00019e.

    Article  CAS  PubMed  Google Scholar 

  36. Wu YY, Wang P, Wang YH, Jiang JB, Bian GQ, Zhu QY, Dai J. Metal–phenanthroline fused Ti17 clusters, a single molecular source for sensitized photoconductive films. J Mater Chem A. 2013;1(34):9862. https://doi.org/10.1039/c3ta11571b.

    Article  CAS  Google Scholar 

  37. Jarzembska KN, Chen Y, Nasca JN, Trzop E, Watson DF, Coppens P. Relating structure and photoelectrochemical properties: electron injection by structurally and theoretically characterized transition metal-doped phenanthroline-polyoxotitanate nanoparticles. Phys Chem Chem Phys. 2014;16(30):15792. https://doi.org/10.1039/c4cp02509a.

    Article  CAS  PubMed  Google Scholar 

  38. Li N, Matthews PD, Leung JJ, King TC, Wood PT, Luo HK, Wright DS. Synthesis, structure and properties of the manganese-doped polyoxotitanate cage [Ti18MnO30(OEt)20(MnPhen)3] (Phen = 1,10-phenanthroline). Dalton Trans. 2015;44(44):19090. https://doi.org/10.1039/c5dt03617h.

    Article  CAS  PubMed  Google Scholar 

  39. Wu RH, Guo M, Yu MX, Zhu LG. Two titanium(iv)-oxo-clusters: synthesis, structures, characterization and recycling catalytic activity in the oxygenation of sulfides. Dalton Trans. 2017;46(41):14348. https://doi.org/10.1039/c7dt02516e.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng H, Deng YK, Ye MY, Xu QF, Kong XJ, Long LS, Zheng LS. Lanthanide-titanium oxo clusters as the luminescence sensor for nitrobenzene detection. Inorg Chem. 2020;59(17):12404. https://doi.org/10.1021/acs.inorgchem.0c01494.

    Article  CAS  PubMed  Google Scholar 

  41. Narayanam N, Fang W-H, Chintakrinda K, Zhang L, Zhang J. Deep eutectic-solvothermal synthesis of titanium-oxo clusters protected by π-conjugated chromophores. Chem Commun (Camb U K). 2017;53(57):8078. https://doi.org/10.1039/C7CC04388K.

    Article  CAS  Google Scholar 

  42. Narayanam N, Chintakrinda K, Fang WH, Kang Y, Zhang L, Zhang J. Azole functionalized polyoxo-titanium clusters with sunlight-driven dye degradation applications: synthesis, structure, and photocatalytic studies. Inorg Chem. 2016;55(20):10294. https://doi.org/10.1021/acs.inorgchem.6b01551.

    Article  CAS  PubMed  Google Scholar 

  43. Narayanam N, Chintakrinda K, Fang W, Zhang L, Zhang J. Atomically precise Zr-Oxo and Zr/Ti-Oxo nanoclusters by deep eutectic-solvothermal synthesis. Acta Phys-Chim Sin. 2018;34(7):781. https://doi.org/10.3866/pku.Whxb201711131.

    Article  CAS  Google Scholar 

  44. Gao YL, Maryunina KY, Hatano S, Nishihara S, Inoue K, Kurmoo M. Co-crystallization of achiral components into chiral network by supramolecular interactions: coordination complexes—organic radical. Cryst Growth Des. 2017;17(9):4893. https://doi.org/10.1021/acs.cgd.7b00847.

    Article  CAS  Google Scholar 

  45. Feng HT, Xiong JB, Luo J, Feng WF, Yang D, Zheng YS. Selective host-guest co-crystallization of pyridine-functionalized tetraphenylethylenes with phthalic acids and multicolor emission of the co-crystals. Chem Eur J. 2017;23(3):644. https://doi.org/10.1002/chem.201604133.

    Article  CAS  PubMed  Google Scholar 

  46. Lv Y, Willkomm J, Steiner A, Gan L, Reisner E, Wright DS. Encapsulation of a ‘naked’ Br anion in a polyoxotitanate host. Chem Sci. 2012;3(8):2470. https://doi.org/10.1039/c2sc20193c.

    Article  CAS  Google Scholar 

  47. Wang JF, Fang WH, Li DS, Zhang L, Zhang J. Cocrystal of Ti4 and Ti6 clusters with enhanced photochemical properties. Inorg Chem. 2017;56(5):2367. https://doi.org/10.1021/acs.inorgchem.6b02913.

    Article  CAS  PubMed  Google Scholar 

  48. Wang H, Zou DH, Jiang GQ, Dai J. Cluster-to-cluster charge transfer in a compound with a co-crystallized dye-anchored Ti6 cluster and a classical Ti12 cluster. Dalton Trans. 2019;48(24):8569. https://doi.org/10.1039/c9dt00812h.

    Article  CAS  PubMed  Google Scholar 

  49. Zhu BC, Hong QL, Yi X, Zhang J, Zhang L. Supramolecular co-assembly of the Ti8L12 cube with [Ti(DMF)6] species and Ti12-Oxo cluster. Inorg Chem. 2020;59(12):8291. https://doi.org/10.1021/acs.inorgchem.0c00682.

    Article  CAS  PubMed  Google Scholar 

  50. Fang WH, Li H, Lv YK, Wright DS. A cocrystallization of polyoxotitanium cages with lanthanide clusters. J Solid State Chem. 2021;294:121852. https://doi.org/10.1016/j.jssc.2020.121852.

    Article  CAS  Google Scholar 

  51. Wang C, Lu YJ, Rao MY, Chen N, Wang SJ, Kong FG. Co-crystal of Ti4Ni2 and Ti8Ni4 clusters with enhanced photochemical properties. CrystEngComm. 2021;23(24):4402. https://doi.org/10.1039/d1ce00369k.

    Article  CAS  Google Scholar 

  52. Liu JJ, Sun SN, Liu J, Kuang Y, Shi JW, Dong LZ, Li N, Lu JN, Lin JM, Li SL, Lan YQ. Achieving high-efficient photoelectrocatalytic degradation of 4-chlorophenol via functional reformation of titanium-oxo clusters. J Am Chem Soc. 2023;145(11):6112. https://doi.org/10.1021/jacs.2c11509.

    Article  CAS  PubMed  Google Scholar 

  53. Wu W, Zhang G, Zhang J, Wang G, Tung CH, Wang Y. Aerobic oxidation of toluene and benzyl alcohol to benzaldehyde using a visible light-responsive titanium-oxide cluster. Chem Eng J. 2021;404:126433. https://doi.org/10.1016/j.cej.2020.126433.

    Article  CAS  Google Scholar 

  54. Gao MY, Bai H, Cui X, Liu S, Ling S, Kong T, Bai B, Hu C, Dai Y, Zhao Y, Zhang L, Zhang J, Xiong Y. Precisely tailoring heterometallic polyoxotitanium clusters for the efficient and selective photocatalytic oxidation of hydrocarbons. Angew Chem Int Ed. 2022;61(52):e202215540. https://doi.org/10.1002/anie.202215540.

    Article  CAS  Google Scholar 

  55. Han EM, Yu WD, Wang B, Yan J, Yi XY, Liu C. Self-assembly of chiral ferrocene-functionalized polyoxotitanium clusters for photocatalytic selective sulfide oxidation. Inorg Chem. 2022;61(6):2903. https://doi.org/10.1021/acs.inorgchem.1c03626.

    Article  CAS  PubMed  Google Scholar 

  56. Guo YH, Yu YZ, Shen YH, Yang LG, Liu NN, Zhou ZY, Niu YS. “Three-in-one” structural-building-mode-based Ti16-type titanium oxo cluster entirely protected by the ligands benzoate and salicylhydroxamate. Inorg Chem. 2022;61(23):8685. https://doi.org/10.1021/acs.inorgchem.2c00327.

    Article  CAS  PubMed  Google Scholar 

  57. Nosaka Y, Nosaka AY. Generation and detection of reactive oxygen species in photocatalysis. Chem Rev. 2017;117(17):11302. https://doi.org/10.1021/acs.chemrev.7b00161.

    Article  CAS  PubMed  Google Scholar 

  58. Shin JM, Cho YM, Sachs G. Chemistry of covalent inhibition of the gastric (H+, K+)-ATPase by proton pump inhibitors. J Am Chem Soc. 2004;126(25):7800. https://doi.org/10.1021/ja049607w.

    Article  CAS  PubMed  Google Scholar 

  59. Sun P, Yang D, Wei W, Jiang M, Wang Z, Zhang L, Zhang H, Zhang Z, Wang Y, Wang H. Visible light-induced C-H sulfenylation using sulfinic acids. Green Chem. 2017;19(20):4785. https://doi.org/10.1039/c7gc01891f.

    Article  CAS  Google Scholar 

  60. Fry FH, Okarter N, Baynton-Smith C, Kershaw MJ, Talbot NJ, Jacob C. Use of a substrate/alliinase combination to generate antifungal activity in situ. J Agric Food Chem. 2005;53(3):574. https://doi.org/10.1021/jf048481j.

    Article  CAS  PubMed  Google Scholar 

  61. Doherty S, Knight JG, Carroll MA, Ellison JR, Hobson SJ, Stevens S, Hardacre C, Goodrich P. Efficient and selective hydrogen peroxide-mediated oxidation of sulfides in batch and segmented and continuous flow using a peroxometalate-based polymer immobilised ionic liquid phase catalyst. Green Chem. 2015;17(3):1559. https://doi.org/10.1039/c4gc01770f.

    Article  CAS  Google Scholar 

  62. Griffin RJ, Henderson A, Curtin NJ, Echalier A, Endicott JA, Hardcastle IR, Newell DR, Noble ME, Wang LZ, Golding BT. Searching for cyclin-dependent kinase inhibitors using a new variant of the cope elimination. J Am Chem Soc. 2006;128(18):6012. https://doi.org/10.1021/ja060595j.

    Article  CAS  PubMed  Google Scholar 

  63. Skolia E, Gkizis PL, Kokotos CG. Aerobic photocatalysis: oxidation of sulfides to sulfoxides. ChemPlusChem. 2022;87(4): e202200008. https://doi.org/10.1002/cplu.202200008.

    Article  CAS  PubMed  Google Scholar 

  64. Liu YF, Cao GM, Chen L, Li K, Lin XL, Xu XX, Le ZG, Yang GP. Synthesis of 3,3′-disubstituted isobenzofuran-1(3H)-ones via Cs0.5H2.5PW12O40-catalyzed difunctionalization of carbonyls. Adv Synth Catal. 2022;364(8):1460. https://doi.org/10.1002/adsc.202200081.

    Article  CAS  Google Scholar 

  65. Li K, Liu YF, Lin XL, Yang GP. Copper-containing polyoxometalate-based metal-organic frameworks as heterogeneous catalysts for the synthesis of N-heterocycles. Inorg Chem. 2022;61(18):6934. https://doi.org/10.1021/acs.inorgchem.2c00287.

    Article  CAS  PubMed  Google Scholar 

  66. Yang GP, Zhang XL, Liu YF, Zhang DD, Li K, Hu CW. Self-assembly of Keggin-type U(vi)-containing tungstophosphates with a sandwich structure: an efficient catalyst for the synthesis of sulfonyl pyrazoles. Inorg Chem Front. 2021;8(21):4650. https://doi.org/10.1039/d1qi00485a.

    Article  CAS  Google Scholar 

  67. Liu JC, Wang JF, Han Q, Shangguan P, Liu LL, Chen LJ, Zhao JW, Streb C, Song YF. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew Chem Int Ed. 2021;60(20):11153. https://doi.org/10.1002/anie.202017318.

    Article  CAS  Google Scholar 

  68. Lv XJ, Zhao XL, Zhao QX, Zheng Q, Xuan WM. Cerium-oxo clusters for photocatalytic aerobic oxygenation of sulfides to sulfoxides. Dalton Trans. 2022;51(23):8949. https://doi.org/10.1039/d2dt00856d.

    Article  CAS  PubMed  Google Scholar 

  69. Liu XH, Zhang JL, Lan YX, Zheng Q, Xuan WM. Infinite building blocks for directed self-assembly of a supramolecular polyoxometalate–cyclodextrin framework for multifunctional oxidative catalysis. Inorg Chem Front. 2022;9(24):6534. https://doi.org/10.1039/d2qi02085h.

    Article  CAS  Google Scholar 

  70. Gu QX, Zhao XL, Meng M, Shao ZY, Zheng Q, Xuan WM. Crystalline porous ionic salts assembled from polyoxometalates and cationic capsule for the selective photocatalytic aerobic oxidation of aromatic alcohols to aldehydes. Chin Chem Lett. 2023;34(4):107444. https://doi.org/10.1016/j.cclet.2022.04.042.

    Article  CAS  Google Scholar 

  71. Zhou T, Xie LL, Niu Y, Xiao HR, Li YJ, Han Q, Qiu XJ, Yang XL, Wu XY, Zhu LM, Pang H, Cao XY. New insights on (V10O28)6−-based electrode materials for energy storage: a brief review. Rare Met. 2023;42(5):1431. https://doi.org/10.1007/s12598-022-02207-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21901037, 21901038 and 92161111), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the Fundamental Research Funds for the Central Universities (No. 2232019G-07) and the International Cooperation Fund of Science and Technology Commission of Shanghai Municipality (No. 21130750100). We also thank the staff from the BL17B1 beamline of the National Facility for Protein Science in Shanghai (NFPS) at Shanghai Synchrotron Radiation Facility, for assistance during data collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Min Xuan or Qi Zheng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4665 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, LR., Zheng, DC., Ou, PX. et al. π-conjugated chromophore functionalized high-nuclearity titanium-oxo clusters containing structural unit of anatase for photocatalytic selective oxidation of sulfides. Rare Met. 43, 1736–1746 (2024). https://doi.org/10.1007/s12598-023-02545-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02545-0

Keywords

Navigation