Skip to main content
Log in

Nanocavity enriched CuPd alloy with high selectivity for CO2 electroreduction toward C2H4

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Electrocatalysis of CO2 reduction reaction is an effective way to convert CO2 into high value-added products, but the selectivity of Cu-based catalysts for C2+ products needs to be improved due to the high energy barrier of C–C coupling. Therefore, a viable catalyst design strategy to decrease energy barrier of C–C coupling should be put forward. Here, a nanocavity-enriched CuPd single atom alloy (CuPd SAA) catalyst is designed to promote C–C coupling process. The faradaic efficiency of CuPd SAA for ethylene and C2+ reaches 75.6% and 85.7% at − 0.7 V versus reversible hydrogen electrode (RHE), respectively. Based on the results given by in situ characterization, the porous hollow structure dramatically increases the ratio of the linear-bond *CO, thus enhancing the faradaic efficiency for ethylene. Density functional theory (DFT) calculation reveals that the Pd doping can regulate the electronic structure of neighboring Cu atoms to decrease the energy barrier of C–C coupling, further improving the faradaic efficiency. This work provides a new idea for designing catalyst with high selectivity for ethylene.

Graphical abstract

摘要

电催化CO2还原反应是将CO2转化为高附加值产物的有效途径,但由于C–C偶联具有较高能势,Cu基催化剂对C2+产物的选择性有待提高。因此,我们应提出一种可行的降低C-C偶联能垒的催化剂设计策略。本文设计了一种富含纳米空腔的CuPd单原子合金(CuPd-SAA)催化剂,以促进C–C偶联过程。在− 0.7 V versus RHE的电位下,CuPd-SAA对乙烯和C2+的法拉第效率分别达到75.6%和85.7%。根据原位表征的结果,多孔中空结构显著提高了线性键*CO的比例,从而提高了乙烯的法拉第效率。密度泛函理论计算表明,Pd掺杂可以调节邻近Cu原子的电子结构,降低C–C偶联的能垒,进一步提高产物的法拉第效率。本研究为设计高选择性生成乙烯的催化剂提供了新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Costentin C, Robert M, Savéant JM. Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev. 2013;42(6):2423. https://doi.org/10.1039/c2cs35360a.

    Article  CAS  PubMed  Google Scholar 

  2. Montoya JH, Seitz LC, Chakthranont P, Vojvodic A, Jaramillo TF, Nørskov JK. Materials for solar fuels and chemicals. Nat Mater. 2016;16(1):70. https://doi.org/10.1038/nmat4778.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Li L, Zhang ZC. Sn-Bi bimetallic interface induced by nano-crumples for CO2 electroreduction to formate. Rare Met. 2022;41(12):3943. https://doi.org/10.1007/s12598-022-02139-2.

    Article  CAS  Google Scholar 

  4. Wang JJ, Li XP, Cui BF, Zhang Z, Hu XF, Ding J, Deng YD, Han XP, Hu WB. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 2021;40(11):3019. https://doi.org/10.1007/s12598-021-01736-x.

    Article  CAS  Google Scholar 

  5. Zhang H, Li J, Cheng MJ, Lu Q. CO electroreduction: current development and understanding of Cu-based catalysts. ACS Catal. 2018;9(1):49. https://doi.org/10.1021/acscatal.8b03780.

    Article  CAS  Google Scholar 

  6. Lu Q, Jiao F. Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy. 2016;29:439. https://doi.org/10.1016/j.nanoen.2016.04.009.

    Article  CAS  Google Scholar 

  7. Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev. 2019;119(12):7610. https://doi.org/10.1021/acs.chemrev.8b00705.

    Article  CAS  PubMed  Google Scholar 

  8. Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 2018;3(7):1545. https://doi.org/10.1021/acsenergylett.8b00553.

    Article  CAS  Google Scholar 

  9. Lee SY, Jung H, Kim NK, Oh HS, Min BK, Hwang YJ. Production from CO2 reduction. J Am Chem Soc. 2018;140(28):8681. https://doi.org/10.1021/jacs.8b02173.

    Article  CAS  PubMed  Google Scholar 

  10. Peterson AA, Nørskov JK. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett. 2012;3(2):251. https://doi.org/10.1021/jz201461.

    Article  CAS  Google Scholar 

  11. Popovic S, Smiljanic M, Jovanovic P, Vavra J, Buonsanti R, Hodnik N. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew Chem Int Ed Engl. 2020;59(35):14736. https://doi.org/10.1002/anie.202000617.

    Article  CAS  PubMed  Google Scholar 

  12. Franco F, Rettenmaier C, Jeon HS, Roldan CB. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem Soc Rev. 2020;49(19):6884. https://doi.org/10.1039/d0cs00835d.

    Article  CAS  PubMed  Google Scholar 

  13. Fan L, Xia C, Yang F, Wang J, Wang H, Lu L. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci Adv. 2020;6:3111. https://doi.org/10.1126/sciadv.aay3111.

    Article  ADS  CAS  Google Scholar 

  14. Luo W, Nie X, Janik MJ, Asthagiri A. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 2015;6(1):219. https://doi.org/10.1021/acscatal.5b01967.

    Article  CAS  Google Scholar 

  15. Xiao H, Cheng T, Goddard WA. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J Am Chem Soc. 2017;139(1):130. https://doi.org/10.1021/jacs.6b06846.

    Article  CAS  PubMed  Google Scholar 

  16. Goodpaster JD, Bell AT, Head-Gordon M. Identification of possible pathways for C-C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J Phys Chem Lett. 2016;7(8):1471. https://doi.org/10.1021/acs.jpclett.6b00358.

    Article  CAS  PubMed  Google Scholar 

  17. Garza AJ, Bell AT, Head-Gordon M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 2018;8(2):1490. https://doi.org/10.1021/acscatal.7b03477.

    Article  CAS  Google Scholar 

  18. Xiao H, Cheng T, Goddard WA, Sundararaman R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J Am Chem Soc. 2016;138(2):483. https://doi.org/10.1021/jacs.5b11390.

    Article  CAS  PubMed  Google Scholar 

  19. Liu X, Schlexer P, Xiao J, Ji Y, Wang L, Sandberg RB, Tang M, Brown KS, Peng H, Ringe S, Hahn C, Jaramillo TF, Nørskov JK, Chan K. pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat Commun. 2019;10(1):1. https://doi.org/10.1038/s41467-018-07970-9.

    Article  CAS  Google Scholar 

  20. Calle-Vallejo F, Koper MTM. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew Chem Int Ed. 2013;52(28):7282. https://doi.org/10.1002/anie.201301470.

    Article  CAS  Google Scholar 

  21. Montoya JH, Shi C, Chan K, Nørskov JK. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J Phys Chem Lett. 2015;6(11):2032. https://doi.org/10.1021/acs.jpclett.5b00722.

    Article  CAS  PubMed  Google Scholar 

  22. Yao K, Li J, Wang H, Lu R, Yang X, Luo M, Wang N, Wang Z, Liu C, Jing T, Chen S, Cortes E, Maier SA, Zhang S, Li T, Yu Y, Liu Y, Kang X, Liang H. Mechanistic insights into OC–COH coupling in CO2 electroreduction on fragmented copper. J Am Chem Soc. 2022;144(31):14005. https://doi.org/10.1021/jacs.2c01044.

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Xu A, Li F, Wang Z, Zou C, Gabardo CM, Wang Y, Ozden A, Xu Y, Nam DH, Lum Y, Wicks J, Chen B, Wang Z, Chen J, Wen Y, Zhuang T, Luo M, Du X, Sham TK, Zhang B, Sargent EH, Sinton D. Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nat Commun. 2020;11(1):3685. https://doi.org/10.1038/s41467-020-17499-5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kong X, Zhao J, Ke J, Wang C, Li S, Si R, Liu B, Zeng J, Geng Z. Understanding the effect of *CO coverage on C–C coupling toward CO2 electroreduction. Nano Lett. 2022;22(9):3801. https://doi.org/10.1021/acs.nanolett.2c00945.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhang G, Zhao ZJ, Cheng D, Li H, Yu J, Wang Q, Gao H, Guo J, Wang H, Ozin GA, Wang T, Gong J. Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nat Commun. 2021;12(1):1. https://doi.org/10.1038/s41467-021-26053-w.

    Article  ADS  CAS  Google Scholar 

  26. Gunathunge CM, Ovalle VJ, Li Y, Janik MJ, Waegele MM. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. ACS Catal. 2018;8(8):7507. https://doi.org/10.1021/acscatal.8b01552.

    Article  CAS  Google Scholar 

  27. Sandberg RB, Montoya JH, Chan K, Nørskov JK. CO-CO coupling on Cu facets: coverage, strain and field effects. Surf Sci. 2016;654:56. https://doi.org/10.1016/j.susc.2016.08.006.

    Article  ADS  CAS  Google Scholar 

  28. Li J, Wang Z, McCallum C, Xu Y, Li F, Wang Y, Gabardo CM, Dinh CT, Zhuang TT, Wang L, Howe JY, Ren Y, Sargent EH, Sinton D. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat Catal. 2019;2(12):1124. https://doi.org/10.1038/s41929-019-0380-x.

    Article  CAS  Google Scholar 

  29. Zhuang TT, Pang Y, Liang ZQ, Wang Z, Li Y, Tan CS, Li J, Dinh CT, De Luna P, Hsieh PL, Burdyny T, Li HH, Liu M, Wang Y, Li F, Proppe A, Johnston A, Nam DH, Wu ZY, Zheng YR, Ip AH, Tan H, Chen LJ, Yu SH, Kelley SO, Sinton D, Sargent EH. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat Catal. 2018;1(12):946. https://doi.org/10.1038/s41929-018-0168-4.

    Article  CAS  Google Scholar 

  30. Liu C, Zhang M, Li J, Xue W, Zheng T, Xia C, Zeng J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling. Angew Chem Int Ed Engl. 2022;61(3):1. https://doi.org/10.1002/anie.202113498.

    Article  CAS  Google Scholar 

  31. Wang X, Wang Z, Zhuang TT, Dinh CT, Li J, Nam DH, Li F, Huang CW, Tan CS, Chen Z, Chi M, Gabardo CM, Seifitokaldani A, Todorovic P, Proppe A, Pang Y, Kirmani AR, Wang Y, Ip AH, Richter LJ, Scheffel B, Xu A, Lo SC, Kelley SO, Sinton D, Sargent EH. Efficient upgrading of CO to C3 fuel using asymmetric C–C coupling active sites. Nat Commun. 2019;10(1):5186. https://doi.org/10.1038/s41467-019-13190-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li M, Wang J, Li P, Chang K, Li C, Wang T, Jiang B, Zhang H, Liu H, Yamauchi Y, Umezawa N, Ye J. Mesoporous palladium–copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO2 to CO. J Mater Chem A. 2016;4(13):4776. https://doi.org/10.1039/c6ta00487c.

    Article  CAS  Google Scholar 

  33. Dunwell M, Lu Q, Heyes JM, Rosen J, Chen JG, Yan Y, Jiao F, Xu B. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J Am Chem Soc. 2017;139(10):3774. https://doi.org/10.1021/jacs.6b13287.

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Chang X, Zhang H, Malkani AS, Cheng MJ, Xu B, Lu Q. Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper. Nat Commun. 2021;12(1):3264. https://doi.org/10.1038/s41467-021-23582-2.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kresse G, Furthmüller J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(1):11169. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  ADS  CAS  Google Scholar 

  36. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter. 1994;49(20):14251. https://doi.org/10.1103/physrevb.49.14251.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154014. https://doi.org/10.1063/1.3382344.

    Article  CAS  Google Scholar 

  38. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  ADS  CAS  Google Scholar 

  39. Blochl PE. Projector augmented-wave method. Phys Rev B Condens Matter. 1994;50(24):17953. https://doi.org/10.1103/physrevb.50.17953.

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B Condens Matter. 1989;40(6):3616. https://doi.org/10.1103/physrevb.40.3616.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Ulrich C, Göbel A, Syassen K, Cardona M. Pressure-induced disappearance of the Raman anomaly in CuCl. Phys Rev Lett. 1999;82(2):351. https://doi.org/10.1103/PhysRevLett.82.351.

    Article  ADS  CAS  Google Scholar 

  42. Frost RL, Martens W, Kloprogge JT, Williams PA. Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite: implications for the study of copper, brass and bronze objects of archaeological significance. J Raman Spectrosc. 2002;33(10):801. https://doi.org/10.1002/jrs.921.

    Article  ADS  CAS  Google Scholar 

  43. Chen S, Huang W, Zheng J, Li Z. Study on the electrodissolution and roughening of a palladium electrode in chloride containing solutions. J Electroanal Chem. 2011;660(1):80. https://doi.org/10.1016/j.jelechem.2011.06.008.

    Article  CAS  Google Scholar 

  44. Yang PP, Zhang XL, Gao FY, Zheng YR, Niu ZZ, Yu X, Liu R, Wu ZZ, Qin S, Ch LP, Duan Y, Ma T, Zheng XS, Zhu JF, Wang HJ, Gao MR, Yu SH. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J Am Chem Soc. 2020;142(13):6400. https://doi.org/10.1021/jacs.0c01699.

    Article  CAS  PubMed  Google Scholar 

  45. Liu A, Gao M, Ren X, Meng F, Yang Y, Gao L, Yang Q, Ma T. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. J Mater Chem A. 2020;8:3541. https://doi.org/10.1039/C9TA11966C.

    Article  CAS  Google Scholar 

  46. Xue Y, Guo Y, Cui H, Zhou Z. Catalyst design for electrochemical reduction of CO2 to multicarbon products. Small Methods. 2021;5(10):2100736. https://doi.org/10.1002/smtd.202100736.

    Article  CAS  Google Scholar 

  47. Tang Z, Nishiwaki E, Fritz KE, Hanrath T, Suntivich J. Cu(I) reducibility controls ethylene vs. ethanol selectiity on (100)-textured copper during pulsed CO2 reduction. ACS Appl Mater Interfaces. 2021;13(12):14050. https://doi.org/10.1021/acsami.0c17668.

    Article  CAS  PubMed  Google Scholar 

  48. Liu C, Zhang XD, Huang JM, Guan MX, Xu M, Gu ZY. In situ reconstruction of Cu-N coordinated MOFs to generate dispersive Cu/Cu2O nanoclusters for selective electroreduction of CO2 to C2H4. ACS Catal. 2022;12(24):15230. https://doi.org/10.1021/acscatal.2c04275.

    Article  CAS  Google Scholar 

  49. Yao K, Xia Y, Li J, Wang N, Han J, Gao C, Han M, Shen G, Liu Y, Seifitokaldani A, Sun X, Liang H. Metal–organic framework derived copper catalysts for CO2 to ethylene conversion. J Mater Chem A. 2020;8(22):11117. https://doi.org/10.1039/d0ta02395g.

    Article  CAS  Google Scholar 

  50. Sultan S, Lee H, Park S, Kim MM, Yoon A, Choi H, Kong TH, Koe YJ, Oh HS, Lee Z, Kim H, Kim W, Kwon Y. Interface rich CuO/Al2CuO4 surface for selective ethylene production from electrochemical CO2 conversion. Energy Environ Sci. 2022;15(6):2397. https://doi.org/10.1039/d1ee03861c.

    Article  CAS  Google Scholar 

  51. Sha Y, Zhang J, Cheng X, Xu M, Su Z, Wang Y, Hu J, Han B, Zheng L. Anchoring ionic liquid in copper electrocatalyst for improving CO2 conversion to ethylene. Angew Chem Int Ed Engl. 2022;61(13):e202200039. https://doi.org/10.1002/anie.202200039.

    Article  CAS  PubMed  Google Scholar 

  52. He C, Duan D, Low J, Bai Y, Jiang Y, Wang X, Chen S, Long R, Song L, Xiong Y. Cu2−xS derived copper nanoparticles: a platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res. 2021;16:4494–8. https://doi.org/10.1007/s12274-021-3532-7.

    Article  ADS  CAS  Google Scholar 

  53. Kim S, Shin D, Park J, Jung JY, Song H. Grain boundary-rich copper nanocatalysts generated from metal-organic framework nanoparticles for CO2-to-C2+ electroconversion. Adv Sci. 2023;10:e2207187. https://doi.org/10.1002/advs.202207187.

    Article  CAS  Google Scholar 

  54. Chang F, Liu Y, Wei J, Yang L, Bai Z. In situ surface/interface generation on Cu2O nanostructures toward enhanced electrocatalytic CO2 reduction to ethylene using operando spectroscopy. Inorg Chem Front. 2023;10(1):240. https://doi.org/10.1039/d2qi01977a.

    Article  CAS  Google Scholar 

  55. Du R, Li T, Wu Q, Wang P, Yang X, Fan Y, Qiu Y, Yan K, Wang P, Zhao Y, Zhao WW, Chen G. In situ engineering of the Cu+/Cu0 interface to boost C2+ selectivity in CO2 electroreduction. ACS Appl Mater Interfaces. 2022;14(32):36527. https://doi.org/10.1021/acsami.2c05992.

    Article  CAS  PubMed  Google Scholar 

  56. Guo PP, He ZH, Yang SY, Wang W, Wang K, Li CC, Wei YY, Liu ZT, Han B. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. Green Chem. 2022;24(4):1527. https://doi.org/10.1039/d1gc04284j.

    Article  CAS  Google Scholar 

  57. Qiu XF, Zhu HL, Huang JR, Liao PQ, Chen XM. Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J Am Chem Soc. 2021;143(19):7242. https://doi.org/10.1021/jacs.1c01466.

    Article  CAS  PubMed  Google Scholar 

  58. Meng DL, Zhang MD, Si DH, Mao MJ, Hou Y, Huang YB, Cao R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew Chem Int Ed Engl. 2021;60(48):25485. https://doi.org/10.1002/anie.202111136.

    Article  CAS  PubMed  Google Scholar 

  59. Zhuo LL, Chen P, Zheng K, Zhang XW, Wu JX, Lin DY, Liu SY, Wang ZS, Liu JY, Zhou DD, Zhang JP. Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4 /CH4 selectivity. Angew Chem Int Ed Engl. 2022;61(28):1. https://doi.org/10.1002/anie.202204967.

    Article  CAS  Google Scholar 

  60. Chu S, Yan X, Choi C, Hong S, Robertson AW, Masa J, Han B, Jung Y, Sun Z. Stabilization of Cu+ by tuning a CuO–CeO2 interface for selective electrochemical CO2 reduction to ethylene. Green Chem. 2020;22(19):6540. https://doi.org/10.1039/d0gc02279a.

    Article  CAS  Google Scholar 

  61. Feng R, Zhu Q, Chu M, Jia S, Zhai J, Wu H, Wu P, Han B. Electrodeposited Cu–Pd bimetallic catalysts for the selective electroreduction of CO2 to ethylene. Green Chem. 2020;22(21):7560. https://doi.org/10.1039/d0gc03051a.

    Article  CAS  Google Scholar 

  62. Zhao Y, Zhang XG, Bodappa N, Yang WM, Liang Q, Radjenovica PM, Wang YH, Zhang YJ, Dong JC, Tian ZQ, Li JF. Elucidating electrochemical CO2 reduction reaction processes on Cu(hkl) single-crystal surfaces by in situ Raman spectroscopy. Energy Environ Sci. 2022;15(9):3968. https://doi.org/10.1039/d2ee01334g.

    Article  CAS  Google Scholar 

  63. Mu S, Lu H, Wu Q, Li L, Zhao R, Long C, Cui C. Hydroxyl radicals dominate reoxidation of oxide-derived Cu in electrochemical CO2 reduction. Nat Commun. 2022;13(1):3694. https://doi.org/10.1038/s41467-022-31498-8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhan C, Dattila F, Rettenmaier C, Bergmann A, Kuhl S, Garcia-Muelas R, Lopez N, Cuenya BR. Revealing the CO coverage-driven C-C coupling mechanism for electrochemical CO2 reduction on Cu2O nanocubes via operando raman spectroscopy. ACS Catal. 2021;11(13):7694. https://doi.org/10.1021/acscatal.1c01478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao Y, Chang X, Malkani AS, Yang X, Thompson L, Jiao F, Xu B. Speciation of Cu surfaces during the electrochemical CO reduction reaction. J Am Chem Soc. 2020;142(21):9735. https://doi.org/10.1021/jacs.0c02354.

    Article  CAS  PubMed  Google Scholar 

  66. An H, Wu L, Mandemaker LDB, Yang S, de Ruiter J, Wijten JHJ, Janssens JCL, Hartman T, van der Stam W, Weckhuysen BM. Sub-second time-resolved surface-enhanced raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew Chem Int Ed Engl. 2021;60(30):16576. https://doi.org/10.1002/anie.202104114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li H, Wei P, Gao D, Wang G. In situ Raman spectroscopy studies for electrochemical CO2 reduction over Cu catalysts. Curr Opin Green Sustain Chem. 2022;34:100589. https://doi.org/10.1016/j.cogsc.2022.100589.

    Article  CAS  Google Scholar 

  68. Huang Y, Handoko AD, Hirunsit P, Yeo BS. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 2017;7(3):1749. https://doi.org/10.1021/acscatal.6b03147.

    Article  CAS  Google Scholar 

  69. Gunathunge CM, Li J, Li X, Hong JJ, Waegele MM. Revealing the predominant surface facets of rough Cu electrodes under electrochemical conditions. ACS Catal. 2020;10(12):6908. https://doi.org/10.1021/acscatal.9b05532.

    Article  CAS  Google Scholar 

  70. Zhou Y, Che F, Liu M, Zou C, Liang Z, De Luna P, Yuan H, Li J, Wang Z, Xie H, Li H, Chen P, Bladt E, Quintero-Bermudez R, Sham TK, Bals S, Hofkens J, Sinton D, Chen G, Sargent EH. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat Chem. 2018;10(9):974. https://doi.org/10.1038/s41557-018-0092-x.

    Article  CAS  PubMed  Google Scholar 

  71. Liu S, Zhang B, Zhang L, Sun J. Rational design strategies of Cu-based electrocatalysts for CO2 electroreduction to C2 products. J Energy Chem. 2022;71(1):63. https://doi.org/10.1016/j.jechem.2022.03.041.

    Article  CAS  Google Scholar 

  72. Bodappa N, Su M, Zhao Y, Le JB, Yang WM, Radjenovic P, Dong JC, Cheng J, Tian ZQ, Li JF. Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ raman spectroscopy. J Am Chem Soc. 2019;141(31):12192. https://doi.org/10.1021/jacs.9b04638.

    Article  CAS  PubMed  Google Scholar 

  73. Dinh CT, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM, Arquer FPG, Kiani A, Edwards JP, Luna PD, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science. 2018;360(6390):783. https://doi.org/10.1126/science.aas9100.

    Article  CAS  PubMed  Google Scholar 

  74. Wang H, Zhang H, Huang Y, Wang H, Ozden A, Yao K, Li H, Guo Q, Liu Y, Vomiero A, Wang Y, Qian Z, Li J, Wang Z, Sun X, Liang H. Strain in copper/ceria heterostruc-ture promotes electrosynthesis of multicarbon products. ACS Nano. 2023;17(1):346. https://doi.org/10.1021/acsnano.2c08453.

    Article  CAS  PubMed  Google Scholar 

  75. He M, Li C, Zhang H, Chang X, Chen JG, Goddard WA, Cheng MJ, Xu B, Lu Q. Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis. Nat Commun. 2020;11(1):3844. https://doi.org/10.1038/s41467-020-17690-8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 50835002 and 51105102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Mao, Hui Liu or Xi-Wen Du.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6187 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZY., Wang, HB., Zhang, FF. et al. Nanocavity enriched CuPd alloy with high selectivity for CO2 electroreduction toward C2H4. Rare Met. 43, 1513–1523 (2024). https://doi.org/10.1007/s12598-023-02527-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02527-2

Keywords

Navigation