Skip to main content
Log in

Microstructures and mechanical properties of a commercial Mg–Al–Zn–Mn alloy with various hot-extrusion processes

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

通过采用差温挤压(DTE)工艺和传统的等温挤压(ITE)工艺制备了Mg-6Al-1Zn-0.15Mn wt% (AZ61)商业合金。显微组织表征表明,DTE工艺促进了AZ61合金晶粒细化(~0.8 μm)和Mg17Al12动态析出。此外,降低模具温度可以提高动态再结晶(DRXed)晶粒的体积分数。通过比较力学性能发现,模具温度130℃下挤压成形的合金具有较高的强度。在极限抗拉强度~400 MPa、拉伸屈服强度~350 MPa的情况下,合金的断裂伸长率依然可达~10%。此外,在DTE样品中观察到较高的位错密度,特别是在未再结晶区域,并且基于透射电子显微镜(TEM)观察证实这些位错为<a>型。结果表明,高强度来源于更细的DRXed晶粒、更高的DRXed区域体积分数、更高的位错密度以及动态析出相强化,DTE工艺具有应用于多种镁合金体系的潜力,并且易于获得高强度AZ61合金。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bu FQ, Yang Q, Guan K, Qiu X, Zhang DP, Sun W, Tian Z, Cui XP, Sun SC, Tang ZM, Liu XJ, Meng J. Study on the mutual effect of La and Gd on microstructure and mechanical properties of Mg–Al–Zn extruded alloy. J Alloys Compd. 2016;688:1241. https://doi.org/10.1016/j.jallcom.2016.07.037.

    Article  CAS  Google Scholar 

  2. Cao Z, Wang XD, Dong J, Wang FH, Wang SQ. Microstructure and mechanical properties of magnesium alloy AZ80 wheel fabricated by power spinning. Chin J Rare Met. 2018;42(2):139. https://doi.org/10.13373/j.cnki.cjrm.xy16090031.

    Article  Google Scholar 

  3. Lee JU, Kim SH, Lee DH, Kim HJ, Kim YM, Park SH. Variations in microstructure and bending formability of extruded Mg–Al–Zn–Ca–Y–MM alloy with precompression and subsequent annealing treatment conditions. J Magnes Alloys. 2022;10:2475. https://doi.org/10.1016/j.jma.2021.03.022.

    Article  CAS  Google Scholar 

  4. Kim HJ, Kim YJ, Park SH. Acceleration of aging behavior and improvement of mechanical properties of extruded AZ80 alloy through (10–12) twinning. J Magnes Alloys. 2021;11:671. https://doi.org/10.1016/j.jma.2021.09.008.

    Article  CAS  Google Scholar 

  5. Jin SC, Cha JW, Go J, Bae JH, Park SH. Comparative study of extrudability, microstructure, and mechanical properties of AZ80 and BA53 alloys. J Magnes Alloys. 2023;11:249. https://doi.org/10.1016/j.jma.2021.07.009.

    Article  CAS  Google Scholar 

  6. Liu BS, Wang HH, Zhang YZ, Yang YX, Ren XX, Du HY, Hou LF, Wei YH, Song GL. The influence of adding samarium on the microstructure, mechanical performance and corrosion behavior of as-extruded AZ41 alloys. J Phys Chem Solids. 2021;150:109851. https://doi.org/10.1016/j.jpcs.2020.109851.

    Article  CAS  Google Scholar 

  7. Rong W, Zhang Y, Wu YJ, Chen YL, Tang T, Peng LM, Li DY. Fabrication of high-strength Mg–Gd–Zn–Zr alloys via differential-thermal extrusion. Mater Charact. 2017;131:380. https://doi.org/10.1016/j.matchar.2017.07.031.

    Article  CAS  Google Scholar 

  8. Yan ZX, Yang Q, Ma R, Lv SH, Wu XH, Liu XJ, Zhang J, Yao CG, Meng FZ, Qiu X. Effects of Sm addition on microstructure evolutions and mechanical properties of high-strength Mg–Gd–Sm–Zr extruded alloys. Mater Sci Eng A. 2022;831:142264. https://doi.org/10.1016/j.msea.2021.142264.

    Article  CAS  Google Scholar 

  9. Wang G, Guo CX, Pang SJ. Thermal stability, mechanical properties and corrosion behavior of a Mg–Cu–Ag–Gd metallic glass with Nb addition. Rare Met. 2017;36(4):183. https://doi.org/10.1007/s12598-017-0885-x.

    Article  CAS  Google Scholar 

  10. Liu BS, Li HX, Ren YP, Jiang M, Qin GW. Phase equilibria of low-Y side in Mg–Zn–Y system at 400 °C. Rare Met. 2020;39(3):262. https://doi.org/10.1007/s12598-018-1024-z.

    Article  CAS  Google Scholar 

  11. Tian Z, Yang Q, Guan K, Cao ZY, Meng J. Microstructural evolution and aging behavior of Mg-4.5Y-2.5Nd-1.0Gd-0.5Zr alloys with different Zn additions. Rare Met. 2021;40(8):2188. https://doi.org/10.1007/s12598-020-01510-5.

    Article  CAS  Google Scholar 

  12. Guan K, Egusa D, Abe E. Dilute long period stacking/order (LPSO)-variant phases along the composition gradient in a Mg–Ho–Cu alloy. J Magnes Alloys. 2022;10:1573. https://doi.org/10.1016/j.jma.2021.11.007.

    Article  CAS  Google Scholar 

  13. Guan K, Egami M, Egusa D, Kimizuka H, Yamasaki M, Kawamura Y, Abe E. Short-range order clusters in the long-period stacking/order phases with an intrinsic-I type stacking fault in Mg–Co–Y alloys. Scr Mater. 2022;207:114282. https://doi.org/10.1016/j.scriptamat.2021.114282.

    Article  CAS  Google Scholar 

  14. Tang S, Kou ZD, Xin TZ, Zhang ZJ, Feng T, Luo T, Lan S, Gerhard W, Jiang B. Achieving high strength via solutes co-clustering and solvents redistribution in an ultralightweight BCC magnesium alloy. Mater Res Lett. 2023;11(7):556. https://doi.org/10.1080/21663831.2023.2188909.

    Article  CAS  Google Scholar 

  15. Xin TZ, Tang S, Ji F, Cui LQ, He BB, Lin X, Tian XL, Hou H, Zhao YH, Michael F. Phase transformations in an ultralight BCC Mg alloy during anisothermal aging. Acta Mater. 2022;239:118248. https://doi.org/10.1016/j.actamat.2022.118248.

    Article  CAS  Google Scholar 

  16. Tang S, Xin TZ, Xu WQ, Miskovic D, Sha G, Quadir Z, Ringer S, Nomoto K, Birbilis N, Ferry M. Precipitation strengthening in an ultralight magnesium alloy. Nat Commun. 2019;10:1003. https://doi.org/10.1038/s41467-019-08954-z.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bi GL, Zhang NM, Jiang J, Li YD, Chen TJ, Fu W, Zhang XR, Fang DQ, Ding XD. Microstructure and yield phenomenon of an extruded Mg–Y–Cu alloy with LPSO phase. J Rare Earths. 2023;41:454. https://doi.org/10.1016/j.jre.2022.01.011.

    Article  CAS  Google Scholar 

  18. Jiang ZT, Meng X, Jiang B, Jiang S, Dai JH, Dong JR, Ding YF. Grain refinement of Mg-3Y alloy using Mg-10Al2Y master alloy. J Rare Earths. 2021;39:881. https://doi.org/10.1016/j.jre.2020.07.016.

    Article  CAS  Google Scholar 

  19. Li BB, Zhang K, Shi GL, Wang KK, Li YJ, Li XG, Ma ML, Yuan JW. Microstructure evolution, mechanical properties and creep mechanisms of Mg-12Gd-1MM-0.6Zr (wt%) magnesium alloy. J Rare Earths. 2021;39:200. https://doi.org/10.1016/j.jre.2021.01.012.

    Article  CAS  Google Scholar 

  20. Jin ZZ, Zha M, Yu ZY, Ma PK, Li YK, Liu JM, Jia HL, Wang HY. Exploring the Hall-Petch relation and strengthening mechanism of bimodal-grained Mg–Al–Zn alloys. J Alloys Compd. 2020;833:155004. https://doi.org/10.1016/j.jallcom.2020.155004.

    Article  CAS  Google Scholar 

  21. Kim WJ, Lee JB, Kim WY, Jeong HT, Jeong HG. Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by asymmetrical rolling. Scr Mater. 2007;56:309. https://doi.org/10.1016/j.scriptamat.2006.09.034.

    Article  CAS  Google Scholar 

  22. Yan C, Xin Y, Chen XB, Xu D, Chu PK, Liu C, Guan B, Huang X, Liu Q. Evading strength-corrosion tradeoff in Mg alloys via dense ultrafine twins. Nat Commun. 2021;12:4616. https://doi.org/10.1038/s41467-021-24939-3.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng ZR, Zhu YM, Liu RL, Xu SW, Davies CHJ, Nie JF, Birbilis N. Achieving exceptionally high strength in Mg-3Al-1Zn-0.3Mn extrusions via suppressing intergranular deformation. Acta Mater. 2018;160:97. https://doi.org/10.1038/s41467-021-24939-3.

    Article  ADS  CAS  Google Scholar 

  24. Lee DH, Lee GM, Park SH. Difference in extrusion temperature dependences of microstructure and mechanical properties between extruded AZ61 and AZ91 alloys. J Magnes Alloys. 2023;11:1683. https://doi.org/10.1016/j.jma.2022.05.015.

    Article  CAS  Google Scholar 

  25. Li RG, Xin RL, Liu Q, Liu JA, Fu GY, Zong L, Yu YM, Guo SG. Effect of Ag addition on microstructure and mechanical properties of Mg-14Gd-05Zr alloy. Mater Charact. 2015;109:43. https://doi.org/10.1016/j.matchar.2015.09.022.

    Article  CAS  Google Scholar 

  26. Huang XS, Kazutaka S, Yasumasa C, Mamoru M. Texture and stretch formability of AZ61 and AM60 magnesium alloy sheets processed by high-temperature rolling. J Alloys Compd. 2015;632:94. https://doi.org/10.1016/j.jallcom.2015.01.148.

    Article  CAS  Google Scholar 

  27. Kim WJ, Parka IB, Han SH. Formation of a nanocomposite-like microstructure in Mg-6Al-1Zn alloy. Scr Mater. 2012;66:590. https://doi.org/10.1016/j.scriptamat.2012.01.014.

    Article  CAS  Google Scholar 

  28. Elsayed FR, Sasaki TT, Ohkubo T, Takahashi H, Xu SW, Kamado S, Hono K. Effect of extrusion conditions on microstructure and mechanical properties of microalloyed Mg–Sn–Al–Zn alloys. Mater Sci Eng A. 2013;588:318. https://doi.org/10.1016/j.msea.2013.09.050.

    Article  CAS  Google Scholar 

  29. Jiang N, Meng LG, Zhang XG, Chen L, Fang CF, Hao H. Microstructure and mechanical properties of Gd-modified AZ80 magnesium alloys. Rare Met. 2022;41(12):4194. https://doi.org/10.1007/s12598-016-0868-3.

    Article  CAS  Google Scholar 

  30. Liu Y, Wen JB, Lia H, He JG. Effects of extrusion parameters on the microstructure, corrosion resistance, and mechanical properties of biodegradable Mg–Zn–Gd–Y–Zr alloy. J Alloys Compd. 2022;891:161964. https://doi.org/10.1016/j.jallcom.2021.161964.

    Article  CAS  Google Scholar 

  31. Mohtadi-Bonab MA, Eskandari M, Szpunar JA. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking. Mater Sci Eng A. 2015;620:97. https://doi.org/10.1016/j.msea.2014.10.009.

    Article  CAS  Google Scholar 

  32. Badji R, Chauveau T, Bacroix B. Texture, misorientation and mechanical anisotropy in a deformed dual phase stainless steel weld joint. Mater Sci Eng A. 2013;575:94. https://doi.org/10.1016/j.msea.2013.03.018.

    Article  CAS  Google Scholar 

  33. Shen JY, Zhang LY, Hu LX, Sun Y, Gao F, Liu WC, Yu H. Effect of subgrain and the associated DRX behavior on the texture modification of Mg-6.63Zn-0.56Zr alloy during hot tensile deformation. Mater Sci Eng A. 2021;823:141745. https://doi.org/10.1016/j.msea.2021.141745.

    Article  CAS  Google Scholar 

  34. Xian JW, Peng L, Zeng G, Wang D, Gourlay CM. Al11Mn4 formation on Al8Mn5 during the solidification and heat treatment of AZ-series magnesium alloys. Materialia. 2021;19:101192. https://doi.org/10.1016/j.mtla.2021.101192.

    Article  CAS  Google Scholar 

  35. Pawar S, Zhou X, Hashimoto T, Thompson GE, Scamans G, Fan Z. Investigation of the microstructure and the influence of iron on the formation of Al8Mn5 particles in twin roll cast AZ31 magnesium alloy. J Alloys Compd. 2015;628:195. https://doi.org/10.1016/j.jallcom.2014.12.028.

    Article  CAS  Google Scholar 

  36. Pan FS, Feng ZX, Zhang XY, Tang AT. The types and distribution characterization of Al–Mn phases in the AZ61 magnesium alloy. Procedia Eng. 2012;27:833. https://doi.org/10.1016/j.proeng.2011.12.528.

    Article  CAS  Google Scholar 

  37. Li BS, Guan K, Yang Q, Niu XD, Zhang DD, Lv SH, Meng FZ, Huang YD, Hort N, Meng J. Microstructures and mechanical properties of a hot-extruded Mg-8Gd-3Yb-1.2Zn-0.5Zr (wt%) alloy. J Alloys Compd. 2019;776:666. https://doi.org/10.1016/j.jallcom.2018.10.322.

    Article  CAS  Google Scholar 

  38. Ren R, Fan JF, Wang BS, Zhang Q, Li WG, Dong HB. Hall-Petch relationship and deformation mechanism of pure Mg at room temperature. J Alloys Compd. 2022;920:165924. https://doi.org/10.1016/j.jallcom.2022.165924.

    Article  CAS  Google Scholar 

  39. Zheng RX, Du JP, Gao S, Somekawa H, Ogata S, Tsuji N. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer. Acta Mater. 2020;198:35. https://doi.org/10.1016/j.actamat.2020.07.055.

    Article  ADS  CAS  Google Scholar 

  40. Jain J, Cizek P, Poole WJ, Barnett MR. Precipitate characteristics and their effect on the prismatic-slip dominated deformation behavior of an Mg-6Zn alloy. Acta Mater. 2013;61:4091. https://doi.org/10.1016/j.actamat.2013.03.033.

    Article  ADS  CAS  Google Scholar 

  41. Armstrong R, Codd I, Douthwaite RM, Petch NJ. The plastic deformation of polycrystalline aggregates. Phil Mag. 1962;7:45. https://doi.org/10.1080/14786436208201857.

    Article  ADS  CAS  Google Scholar 

  42. Zhang DD, Zhang DP, Bu FQ, Li XL, Li BS, Yan TL, Guan K, Yang Q, Liu XJ, Meng J. Excellent ductility and strong work hardening effect of as-cast Mg–Zn–Zr–Yb alloy at room temperature. J Alloys Compd. 2017;728:404. https://doi.org/10.1016/j.jallcom.2017.09.016.

    Article  CAS  Google Scholar 

  43. Verdier M, Groma I, Flandin L, Lendvai J, Brkhet Y, Guyot P. Dislocation densities and stored energy after cold rolling of Al–Mg alloys: investigations by resistivity and differential scanning calorimetry. Scr Mater. 1997;37:449. https://doi.org/10.1016/S1359-6462(97)00118-8.

    Article  CAS  Google Scholar 

  44. Nembach E. Particle strengthening of metals and alloys. New York: John Wiley & Sons Inc; 1997. 1.

    Google Scholar 

  45. Singh LK, Joseph P, Srinivasan A, Pillai UTS, Pai BC. Microstructure and mechanical properties of gadolinium and misch metal-added Mg–Al alloy. Rare Met. 2022;41(9):3205. https://doi.org/10.1007/s12598-017-0928-3.

    Article  CAS  Google Scholar 

  46. Nie JF. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr Mater. 2003;48:1009. https://doi.org/10.1016/S1359-6462(02)00497-9.

    Article  CAS  Google Scholar 

  47. Son HW, Lee JW, Hyun SK. Effects of CaO addition and strain rate on the texture evolution of AZ31 alloy. Mater Sci Eng A. 2019;744:724. https://doi.org/10.1016/j.msea.2018.12.091.

    Article  CAS  Google Scholar 

  48. Song LP, Lu YL, Zhang Y, Li XC, Cong MQ, Xu WT. The effect of Ca addition on microstructure and mechanical properties of extruded AZ31 alloys. Vacuum. 2019;168:108822. https://doi.org/10.1016/j.vacuum.2019.108822.

    Article  ADS  CAS  Google Scholar 

  49. Bae SW, Kim SH, Lee JU, Jo WK, Hong WH, Kim W, Park SH. Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg–Al–Zn alloy through Sn addition. J Alloys Compd. 2018;766:748. https://doi.org/10.1016/j.jallcom.2018.07.028.

    Article  CAS  Google Scholar 

  50. Yu H, Park SH, You BS. Development of extraordinary high-strength Mg-8Al-0.5Zn alloy via a low temperature and slow speed extrusion. Mater Sci Eng A. 2014;610:445. https://doi.org/10.1016/j.msea.2014.05.058.

    Article  CAS  Google Scholar 

  51. Kim YJ, Kim YM, Bae JH, Joo SH, Park SH. Microstructural characteristics and low-cycle fatigue properties of AZ91 and AZ91-Ca-Y alloys extruded at different temperatures. J Magnes Alloys. 2023;11:892. https://doi.org/10.1016/j.jma.2021.12.015.

    Article  CAS  Google Scholar 

  52. Hutchinson CR, Nie JF, Gorrse S. Modeling the precipitation processes and strengthening mechanisms in a Mg–Al–(Zn) AZ91 alloy. Metall Mater Trans A Phys Metall Mater Sci. 2005;36:2093. https://doi.org/10.1007/s11661-005-0330-x.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Projects for Science and Technology of Jilin Province (Nos. 20210402064GH and 20220402012GH), the National Natural Science Foundation of China (No. U21A20323), the Capital Construction Fund within the Budget of Jilin Province (No. 2023C044-2), the Special High-Tech Industrialization Project of Science and Technology Cooperation between Jilin Province and Chinese Academy of Sciences (No. 2021SYHZ0043), the Major science and technology projects of Jilin Province and Changchun City (No. 20210301024GX) and the Project for Jilin provincial department of education (No. JJKH20220760KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan-Zhi Meng or Qiang Yang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Meng, FZ., Yang, Q. et al. Microstructures and mechanical properties of a commercial Mg–Al–Zn–Mn alloy with various hot-extrusion processes. Rare Met. 43, 1329–1336 (2024). https://doi.org/10.1007/s12598-023-02522-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02522-7

Navigation