Skip to main content
Log in

Spatially charge-separated 2D homojunction for photocatalytic hydrogen production

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Suppression of photogenerated charge recombination is crucial for efficient photocatalytic hydrogen production. Homojunctions have garnered more attention than heterojunctions due to their superior crystal binding and band structure matching. However, most homojunctions suffer from redox interference caused by continuous oxidizing and reducing phases that impede the ability to improve photocatalytic activity. Consequently, the preparation of homojunction photocatalysts with completely spatial separation of both in charge and redox phases remains challenging. Here, the preparation of a two-dimensional (2D) homojunction CeO2 with a back-to-back geometry and fully separated oxidizing and reducing phases is reported. The prepared CeO2 is composed of nanosheets with two contrasting smooth and rough surfaces. Experimental and theoretical results indicate that the rough surface contains more highly reducing CeO2{220} and strongly visible-light-absorbing CeO2{200} facets than the smooth surface. The 2D homojunction CeO2 produces three-times more hydrogen than normal CeO2 nanosheets, and even more than that of CeO2 nanosheets loaded with gold nanoparticles. This work presents a new homojunction photocatalyst model with completely spatial separation of both in charge and redox phases that is expected to inspire further research into homojunction photocatalysts.

Graphical abstract

摘要

抑制光生电荷复合对有效的光催化制氢至关重要。同质结由于其优异的晶体结合和能带结构匹配性能而受到了比异质结更多的关注。然而, 大多数同质结的氧化和还原相连续分布, 引起的氧化还原反应的相互干扰, 阻碍了提高光催化活性的能力。因此, 制备电荷和氧化还原相在空间上完全分离的同质结光催化剂仍然具有挑战性。在这里, 我们报道了一个二维(2D)同质结CeO2, 氧化还原相具有背靠背的完全分离结构。实验和理论结果表明, 与光滑表面相比, 粗糙表面含有更多的高还原性CeO2{220}和强可见光吸收CeO2{200}晶面。与普通的CeO2纳米片相比, 2D异面同质结CeO2纳米片产生的氢气量是普通CeO2纳米片的三倍, 甚至比负载了金纳米颗粒的CeO2纳米片产生的氢气量还要多。这项工作提出了一种新的具有完全空间分离的电荷相和氧化还原相的同质结光催化剂模型, 将激发研究者对同质结光催化剂的进一步研究。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Zhu CZ, He QY, Sun TY, Xu MT, Wang J, Jin QJ, Chen CX, Duan XG, Xu HT, Wang SB. Edge-enriched laminar hexagonal (2H) MoSe2-anchored sulfur vacancies-rich ReS2 nanoflowers for boosted light-to-hydrogen conversion. Chem Eng J. 2023;464:142704. https://doi.org/10.1016/j.cej.2023.142704.

    Article  CAS  Google Scholar 

  2. Qiu JY, Feng HZ, Chen ZH, Ruan SH, Chen YP, Xu TT, Su JY, Ha EN, Wang LY. Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation. Rare Met. 2022;41(6):2074. https://doi.org/10.1007/s12598-021-01929-4.

    Article  CAS  Google Scholar 

  3. Wu JH, Zhao W, Chen M, Liu CX, Chen JC, Chen Z. Recent advance in visible-light-driven photocatalysis on lead-free halide perovskites. Chin J Rare Met. 2022,46(1):96. https://doi.org/10.13373/j.cnki.cjrm.XY21040007.

    Article  Google Scholar 

  4. Liu WW, Pan J, Peng RF. Shape-dependent hydrogen generation performance of PtPd bimetallic co-catalyst coupled with C3N4 photocatalyst. Rare Met. 2021;40(12):3554. https://doi.org/10.1007/s12598-021-01705-4.

    Article  CAS  Google Scholar 

  5. Nishiyama H, Yamada T, Nakabayashi M, Maehara Y, Yamaguchi M, Kuromiya Y, Nagatsuma Y, Tokudome H, Akiyama S, Watanabe T, Narushima R, Okunaka S, Shibata N, Takata T, Hisatomi T, Domen K. Photocatalytic solar hydrogen production from water on a 100–m2 scale. Nature. 2021;598(7880):304. https://doi.org/10.1038/s41586-021-03907-3.

    Article  CAS  Google Scholar 

  6. Cheng C, Mao LH, Kang X, Dong CL, Huang YC, Shen SH, Shi JW, Guo LJ. A high-cyano groups-content amorphous-crystalline carbon nitride isotype heterojunction photocatalyst for high-quantum-yield H2 production and enhanced CO2 reduction. Appl Catal B Environ. 2023;331:122733. https://doi.org/10.1016/j.apcatb.2023.122733.

    Article  CAS  Google Scholar 

  7. Cheng C, Shi JW, Mao LH, Dong CL, Huang YC, Zong SC, Liu JM, Shen SH, Guo LJ. Ultrathin porous graphitic carbon nitride from recrystallized precursor toward significantly enhanced photocatalytic water splitting. J Colloid Interface Sci. 2023;637:271. https://doi.org/10.1016/j.jcis.2023.01.098.

    Article  CAS  Google Scholar 

  8. Zhang C, Xie C, Gao Y, Tao X, Ding C, Fan F, Jiang HL. Charge separation by creating band bending in metal-organic frameworks for improved photocatalytic hydrogen evolution. Angew Chem Int Ed Engl. 2022;61(28):e202204108. https://doi.org/10.1002/anie.202204108.

    Article  CAS  Google Scholar 

  9. Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C. Spatial separation of photogenerated electrons and holes among 010 and 110 crystal facets of BiVO4. Nat Commun. 2013;4:1432. https://doi.org/10.1038/ncomms2401.

    Article  CAS  Google Scholar 

  10. Chen R, Ren Z, Liang Y, Zhang G, Dittrich T, Liu R, Liu Y, Zhao Y, Pang S, An H, Ni C, Zhou P, Han K, Fan F, Li C. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature. 2022;610(7931):296. https://doi.org/10.1038/s41586-022-05183-1.

    Article  CAS  Google Scholar 

  11. Yuan S, Zhang Q. Application of one-dimensional nanomaterials in catalysis at the single-molecule and single-particle scale. Front Chem. 2021;9:812287. https://doi.org/10.3389/fchem.2021.812287.

    Article  CAS  Google Scholar 

  12. Wang D, Yin FX, Cheng B, Xia Y, Yu JG, Ho WK. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Met. 2021;40(9):2369. https://doi.org/10.1007/s12598-021-01731-2.

    Article  CAS  Google Scholar 

  13. Xiao SN, Zhang NY, Tao Y, Song XL, Li GS, Li HX, Zhang DQ. Carbon nanotube-threaded mesocrystalline CeO2 for enhanced photocatalytic NO removal. ACS Appl Nano Mater. 2022;5(3):3581. https://doi.org/10.1021/acsanm.1c04210.

    Article  CAS  Google Scholar 

  14. Sun YK, Zhao XW, Song XL, Fan JC, Yang JH, Miao YC, Xiao SN. An all-in-one FeOx-rGO sponge fabricated by solid-phase microwave thermal shock for water evaporation and purification. J Environ Sci. 2023;138:671. https://doi.org/10.1016/j.jes.2023.04.023.

    Article  Google Scholar 

  15. Zhu CZ, Yao HQ, Sun TY, Le SK, Jin QJ, Chen CX, Xu HT, Wang SB. Ultrathin fluorine-doped TiO2(B) nanosheets-anchored hierarchical cog wheel-shaped NH2-MIL-53(Al) for boosting photocatalytic activity. Chem Eng J. 2023;460:141849. https://doi.org/10.1016/j.cej.2023.141849.

    Article  CAS  Google Scholar 

  16. Yang L, Gao TY, Yuan SS, Dong Y, Chen YM, Wang XJ, Chen CX, Tang L, Ohno T. Spatial charge separated two-dimensional/two-dimensional Cu-In2S3/CdS heterojunction for boosting photocatalytic hydrogen production. J Colloid Interface Sci. 2023;652:1503. https://doi.org/10.1016/j.jcis.2023.08.149.

    Article  CAS  Google Scholar 

  17. Teng ZY, Zhang QT, Yang HB, Kato K, Yang WJ. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat Catal. 2021;4(5):374. https://doi.org/10.1038/s41929-021-00605-1.

    Article  CAS  Google Scholar 

  18. Yu FC, Li YM, Liu ZY, Cui JP, Zhou YD. Synthesis and photocatalytic properties of Na doped g-C3N4 nanotubes. Chin J Rare Met. 2022,46(7):889. https://doi.org/10.13373/j.cnki.cjrm.XY21040038.

    Article  Google Scholar 

  19. Gao G, Jiao Y, Waclawik ER, Du A. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J Am Chem Soc. 2016;138(19):6292. https://doi.org/10.1021/jacs.6b02692.

    Article  CAS  Google Scholar 

  20. Le SK, Zhu CZ, Cao YW, Wang P, Liu QS, Zhou HC, Chen CX, Wang SB, Duan XG. V2O5 nanodot-decorated laminar C3N4 for sustainable photodegradation of amoxicillin under solar light. Appl Catal B Environ. 2022;303:120903. https://doi.org/10.1016/j.apcatb.2021.120903.

    Article  CAS  Google Scholar 

  21. Chen CX, Xiong YY, Zhong X, Lan PC, Wei ZW, Pan H, Su PY, Song Y, Chen YF, Nafady A, Sirajuddin MS. Enhancing photocatalytic hydrogen production via the construction of robust multivariate Ti-MOF/COF composites. Angew Chem Int Ed Engl. 2022;61(3):e202114071. https://doi.org/10.1002/anie.202114071.

    Article  CAS  Google Scholar 

  22. Huang ZF, Song JJ, Wang X, Pan L, Li K, Zhang XW, Wang L, Zou JJ. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy. 2017;40:308. https://doi.org/10.1016/j.nanoen.2017.08.032.

    Article  CAS  Google Scholar 

  23. Wang X, Xu Q, Li M, Shen S, Wang X, Wang Y, Feng Z, Shi J, Han H, Li C. Photocatalytic overall water splitting promoted by an alpha-beta phase junction on Ga2O3. Angew Chem Int Ed Engl. 2012;51(52):13089. https://doi.org/10.1002/anie.201207554.

    Article  CAS  Google Scholar 

  24. Li P, Zhou Y, Zhao Z, Xu Q, Wang X, Xiao M, Zou Z. Hexahedron prism-anchored octahedronal CeO2: crystal facet-based homojunction promoting efficient solar fuel synthesis. J Am Chem Soc. 2015;137(30):9547. https://doi.org/10.1021/jacs.5b05926.

    Article  CAS  Google Scholar 

  25. Dong Y, Gao TY, Yuan SS, Zhu CZ, Yang L, Chen YM, Wang XJ, Yin Y, Chen CX, Tang L, Ohno T. Ultrathin TiO2(B) nanosheets-decorated hollow CoFeP cube as PMS activator for enhanced photocatalytic activity. Appl. Surf. Sci. 2024;643:158667. https://doi.org/10.1016/j.apsusc.2023.158667.

    Article  CAS  Google Scholar 

  26. Wu SM, Liu XL, Lian XL, Tian G, Janiak C, Zhang YX, Lu Y, Yu HZ, Hu J, Wei H, Zhao H, Chang GG, Van Tendeloo G, Wang LY, Yang XY, Su BL. Homojunction of oxygen and titanium vacancies and its interfacial n-p effect. Adv Mater. 2018;30(32):e1802173. https://doi.org/10.1002/adma.201802173.

    Article  CAS  Google Scholar 

  27. Wang F, Pei K, Li Y, Li H, Zhai T. 2D homojunctions for electronics and optoelectronics. Adv Mater. 2021;33(15):e2005303. https://doi.org/10.1002/adma.202005303.

    Article  CAS  Google Scholar 

  28. Liu Y, Chen C, He Y, Zhang Z, Li M, Li C, Chen XB, Han Y, Shi Z. Rich indium-vacancies In2S3 with atomic p-n homojunction for boosting photocatalytic multifunctional properties. Small. 2022;18(34):e2201556. https://doi.org/10.1002/smll.202201556.

    Article  CAS  Google Scholar 

  29. Liu LJ, Jiang YQ, Zhao HL, Chen JT, Cheng JL, Yang KS, Li Y. Engineering coexposed 001 and 101 facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal. 2016;6(2):1097. https://doi.org/10.1021/acscatal.5b02098.

    Article  CAS  Google Scholar 

  30. Liu Z, Wang G, Chen HS, Yang P. An amorphous/crystalline g-C3N4 homojunction for visible light photocatalysis reactions with superior activity. Chem Commun (Camb). 2018;54(37):4720. https://doi.org/10.1039/c8cc01824c.

    Article  CAS  Google Scholar 

  31. Phang SJ, Wong VL, Tan LL, Chai SP. Recent advances in homojunction-based photocatalysis for sustainable environmental remediation and clean energy generation. Appl Mater Today. 2020;20:100741. https://doi.org/10.1016/j.apmt.2020.100741.

    Article  Google Scholar 

  32. Wang Z, Zhu J, Zu X, Wu Y, Shang S, Ling P, Qiao P, Liu C, Hu J, Pan Y, Zhu J, Sun Y, Xie Y. Selective CO2 photoreduction to CH4 via Pd(delta+) -assisted hydrodeoxygenation over CeO2 nanosheets. Angew Chem Int Ed Engl. 2022;61(30):e202203249. https://doi.org/10.1002/anie.202203249.

    Article  CAS  Google Scholar 

  33. Huang YC, Wu SH, Hsiao CH, Lee AT, Huang MH. Mild synthesis of size-tunable CeO2 octahedra for band gap variation. Chem Mater. 2020;32(6):2631. https://doi.org/10.1021/acs.chemmater.0c00318.

    Article  CAS  Google Scholar 

  34. Yang H, Jia L, Zhang ZP, Xu B, Zhang QT, Yuan SS, Xiao YH, Nan ZD, Zhang M, Zhang YC, Ohno T. Enhanced photocatalytic VOCs degradation performance on Fe-doped ceria under visible light. Appl Mater Today. 2022;29:101651. https://doi.org/10.1016/j.apmt.2022.101651.

    Article  Google Scholar 

  35. Yuan SS, Zhang QT, Xu B, Jin ZY, Zhang Y, Yang Y, Zhang M, Ohno T. Porous cerium dioxide hollow spheres and their photocatalytic performance. RSC Adv. 2014;4(107):62255. https://doi.org/10.1039/c4ra12127a.

    Article  CAS  Google Scholar 

  36. Yuan SS, Liu SX, Zhang QT, Zhang M, Xu B, Ohno T. Effects of the atmosphere in a hydrothermal process on the morphology and photocatalytic activity of cerium oxide. ChemCatChem. 2018;10(19):4269. https://doi.org/10.1002/cctc.201800659.

    Article  CAS  Google Scholar 

  37. Yuan SS, Xu B, Zhang QT, Liu SX, Xie J, Zhang M, Ohno T. Development of the visible-light response of CeO2−x with a high Ce3+ content and its photocatalytic properties. ChemCatChem. 2018;10(6):1267. https://doi.org/10.1002/cctc.201701767.

    Article  CAS  Google Scholar 

  38. Thirumalairajan S, Girija K. Efficient and tunable shape selective synthesis of Ag/CeO2 nanostructures modified highly stable SERS substrate for ultrasensitive detection of pesticides on the surface of an apple. Nanoscale Adv. 2020;2(8):3570. https://doi.org/10.1039/d0na00390e.

    Article  CAS  Google Scholar 

  39. Yang Y, Mao Z, Huang W, Liu L, Li J, Li J, Wu Q. Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets. Sci Rep. 2016;6:35344. https://doi.org/10.1038/srep35344.

    Article  CAS  Google Scholar 

  40. Mi RL, Li D, Hu Z, Yang RT. Morphology effects of CeO2 nanomaterials on the catalytic combustion of toluene: a combined kinetics and diffuse reflectance infrared Fourier transform spectroscopy study. ACS Catal. 2021;11(13):7876. https://doi.org/10.1021/acscatal.1c01981.

    Article  CAS  Google Scholar 

  41. Tanaka A, Hashimoto K, Kominami H. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J Am Chem Soc. 2012;134(35):14526. https://doi.org/10.1021/ja305225s.

    Article  CAS  Google Scholar 

  42. Tatsuma T, Nishi H, Ishida T. Plasmon-induced charge separation: chemistry and wide applications. Chem Sci. 2017;8(5):3325. https://doi.org/10.1039/c7sc00031f.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22205084 and 21805191), the Start-Up Funding of Jiangsu University of Science and Technology (No. 1112932203), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010982), Shenzhen Stable Support Project (No. 20200812122947002), and Shenzhen Peacock Plan (No. 20210802524B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sai-Sai Yuan, Chuan-Xiang Chen or Qi-Tao Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3074 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XJ., Yuan, SS., Yang, L. et al. Spatially charge-separated 2D homojunction for photocatalytic hydrogen production. Rare Met. 42, 3952–3959 (2023). https://doi.org/10.1007/s12598-023-02505-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02505-8

Navigation