Skip to main content
Log in

Honeycomb-like MoCo alloy on 3D nitrogen-doped porous graphene for efficient hydrogen evolution reaction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

An efficient electrocatalyst is indispensable to significantly reduce energy consumption and accelerate the conversion efficiency of water splitting. In this work, the honeycomb-like porous MoCo alloy on nitrogen-doped three-dimensional (3D) porous graphene substrate (Mo0.3Co0.7@NPG) has been synthesized from the annealing of layered double hydroxide (MoCo-LDH@NPG). Especially, the Mo0.3Co0.7@NPG exhibits low hydrogen evolution overpotential of 75 mV (10 mA·cm–2) and a Tafel slope of 69.9 mV·dec–1, which can be attributed to highly conductive NPG substrate, the unique nanostructure and the synergistic effect of Mo and Co. Moreover, the Mo0.3Co0.7@NPG can maintain the original morphology and high catalytic activity after 50-h stability test. This work proposes a general strategy to synthesize a multi-element alloy on conductive substrates with high porosity for electrocatalytic reaction.

摘要

高效的电催化剂可以显著降低电解水的能耗和提高转化效率。本项工作以MoCo双金属氢氧化物作为前驱体, 在三维(3D) 氮掺杂多孔石墨烯衬底上合成了蜂窝状多孔MoCo合金(Mo0.3Co0.7@NPG)。在析氢反应中, Mo0.3Co0.7@NPG的析氢过电位为75 mV (10 mA cm–2), Tafel斜率为69.9 mV dec–1。Mo0.3Co0.7@NPG具有优异的电化学性能主要归功于NPG衬底的高导电性、MoCo合金独特的纳米结构以及Mo和Co的协同作用。此外, 经过50 h的稳定性测试, Mo0.3Co0.7@NPG仍能保持原有的形貌和较高的催化活性。因此, 本项工作对于在高孔隙率导电基板上合成高效的多元素合金电催化剂提供了一种思路。

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou YN, Li J, Gao XP, Chu W, Gao GP, Lin WW. Recent advances in single-atom electrocatalysts supported on two-dimensional materials for the oxygen evolution reaction. J Mater Chem A. 2021;9(16):9979. https://doi.org/10.1039/D1TA90003J.

    Article  CAS  Google Scholar 

  2. Zhou F, Zhou Y, Liu GG, Wang CT, Wang J. Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Met. 2021;40(12):3375. https://doi.org/10.1007/s12598-021-01735-y.

    Article  CAS  Google Scholar 

  3. Cheng CC, Cheng PY, Huang CL, Senthil RD, Wu YJ, Lu SY. Gold nanocrystal decorated trimetallic metal organic frameworks as high performance electrocatalysts for oxygen evolution reaction. Appl Catal B Environ. 2021;286:119916. https://doi.org/10.1016/j.apcatb.2021.119916.

    Article  CAS  Google Scholar 

  4. Liu XZ, Zou P, Song LJ, Zang BW, Yao BN, Xu W, Li FS, Schroers J, Huo JT, Wang JQ. Combinatorial high-throughput methods for designing hydrogen evolution reaction catalysts. ACS Catal. 2022;12(7):3789. https://doi.org/10.1021/acscatal.2c00869.

    Article  CAS  Google Scholar 

  5. Zhang X, Tian Y, Chen LT, Hu X, Zhou Z. Machine learning: a new paradigm in computational electrocatalysis. J Phys Chem Lett. 2022;13(34):7920. https://doi.org/10.1021/acs.jpclett.2c01710.

    Article  CAS  PubMed  Google Scholar 

  6. Pandit NK, Roy D, Mandal SC, Pathak B. Rational designing of bimetallic/trimetallic hydrogen evolution reaction catalysts using supervised machine learning. J Phys Chem Lett. 2022;13(32):7583. https://doi.org/10.1021/acs.jpclett.2c01401.

    Article  CAS  PubMed  Google Scholar 

  7. Wei H, Sun HH, Xu F, Wang JG. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020;39(4):335. https://doi.org/10.1007/s12598-020-01384-7.

    Article  CAS  Google Scholar 

  8. Tang T, Jiang WJ, Niu S, Liu N, Luo H, Chen YY, Jin SF, Gao F, Wan LJ, Hu JS. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J Am Chem Soc. 2017;139(24):8320. https://doi.org/10.1021/jacs.7b03507.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Q, Li MY, Shi YM, Liu CB, Yu YF, Zhang B. In situ structural reconstruction of NiMo alloy as a versatile organic oxidation electrode for boosting hydrogen production. Rare Met. 2022;41(3):836. https://doi.org/10.1007/s12598-021-01824-y.

    Article  CAS  Google Scholar 

  10. Xu BB, Fu XB, You XM, Zhao E, Li FF, Chen Z, Li YX, Wang XL, Yao YF. Synergistic promotion of single-Atom Co surrounding a PtCo alloy based on a g-C3N4 nanosheet for overall water splitting. ACS Catal. 2022;12(12):6958. https://doi.org/10.1021/acscatal.2c00751.

    Article  CAS  Google Scholar 

  11. Lu YK, Zheng XY, Liu Y, Zhu JJ, Li D, Jiang DL. Synergistically coupled CoMo/CoMoP electrocatalyst for highly efficient and stable overall water splitting. Inorg Chem. 2022;61(21):8328. https://doi.org/10.1021/acs.inorgchem.2c00923.

    Article  CAS  PubMed  Google Scholar 

  12. Xu XH, Zhang YJ, Miao XY. Synthesis and electrocatalytic performance of 3D coral-like NiCo-P. Chin J Rare Met. 2022;46(11):1449–59. https://doi.org/10.13373/j.cnki.cjrm.XY22080001.

    Article  CAS  Google Scholar 

  13. Kwon IS, Kwak IH, Zewdie GM, Lee SJ, Kim JY, Yoo SJ, Kim JG, Park J, Kang HS. WSe2-VSe2 alloyed nanosheets to enhance the catalytic performance of hydrogen evolution reaction. ACS Nano. 2022;16(8):12569. https://doi.org/10.1021/acsnano.2c04113.

    Article  CAS  PubMed  Google Scholar 

  14. Kwak IH, Kwon IS, Kim JY, Zewdie GM, Lee SJ, Yoo SJ, Kim JG, Park J, Kang HS. Full composition tuning of W1–xNbxSe2 alloy nanosheets to promote the electrocatalytic hydrogen evolution reaction. ACS Nano. 2022;16(9):13949. https://doi.org/10.1021/acsnano.2c03157.

    Article  CAS  PubMed  Google Scholar 

  15. Li SW, Yang JH, Song CQ, Zhu QJ, Xiao DQ, Ma D. Iron carbides: control synthesis and catalytic applications in COx hydrogenation and electrochemical HER. Adv Mater. 2019;31:1901796. https://doi.org/10.1002/adma.201901796.

    Article  CAS  Google Scholar 

  16. Li SW, Ren PJ, Yang C, Liu X, Yin Z, Li WZ, Yang HJ, Li J, Wang XP, Wang Y, Cao RC, Lin LL, Yao SY, Wen XD, Ma D. Fe5C2 nanoparticles as low-cost HER electrocatalyst: the importance of Co substitution. Sci Bull. 2018;63:1358. https://doi.org/10.1016/j.scib.2018.09.016.

    Article  CAS  Google Scholar 

  17. Wu J, Qin XT, Xia Y, Zhang YY, Zhang B, Du YC, Wang HL, Li SW, Xu P. Surface oxidation protection strategy of CoS2 by V2O5 for electrocatalytic hydrogen evolution reaction. Nanoscale Horiz. 2023;8:338. https://doi.org/10.1039/D2NH00431C.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Ding WL, Cao YH, Liu H, Wang AX, Zhang CJ, Zheng XR. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2021;40(6):1373. https://doi.org/10.1007/s12598-020-01541-y.

    Article  CAS  Google Scholar 

  19. Li HX, Huang YP, Zhou HH, Yang W, Li MB, Huang Z, Fu CP, Kuang YF. One step in-situ synthesis of Co@N, S co-doped CNTs composite with excellent HER and ORR bi-functional electrocatalytic performances. Electrochim Acta. 2017;247:736. https://doi.org/10.1016/j.electacta.2017.07.082.

    Article  CAS  Google Scholar 

  20. Baby A, Trovato L, Di Valentin C. Single atom catalysts (SAC) trapped in defective and nitrogen-doped graphene supported on metal substrates. Carbon. 2021;174:772. https://doi.org/10.1016/j.carbon.2020.12.045.

    Article  CAS  Google Scholar 

  21. Pei Y, He WT, Wang MM, Wang J, Sun TM, Hu LP, Zhu JL, Tan YF, Wang JC. RuCo alloy trifunctional electrocatalysts with ratio-dependent activity for Zn-air batteries and self-powered water splitting. Chem Commun. 2021;57(12):1498. https://doi.org/10.1039/D1CC90376D.

    Article  CAS  Google Scholar 

  22. Li RT, Du YX, Li YH, He ZX, Dai L, Wang L, Wu XW, Zhang JJ, Yi J. Alloying strategy for high-performance zinc metal anodes. ACS Energy Lett. 2022;8:457. https://doi.org/10.1021/acsenergylett.2c01960.

    Article  CAS  Google Scholar 

  23. Han WJ, Li MH, Ma YY, Yang JP. Cobalt-based metal-organic frameworks and their derivatives for hydrogen evolution reaction. Front Chem. 2020;8:592915. https://doi.org/10.3389/fchem.2020.592915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu A, Kim SY, Lee C, Kim MH, Lee Y. Boosted electron-transfer kinetics of hydrogen evolution reaction at bimetallic RhCo alloy nanotubes in acidic solution. ACS Appl Mater. 2019;11(50):46886. https://doi.org/10.1021/acsami.9b16892.

    Article  CAS  Google Scholar 

  25. Wang XX, Hwang S, Pan YT, Chen K, He Y, Karakalos S, Zhang HH, Spendelow JS, Su D, Wu G. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett. 2018;18(7):4163. https://doi.org/10.1021/acs.nanolett.8b00978.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. He CS, Hu XC, Wang J, Bu LZ, Zhan CH, Xu BY, Li LG, Li YC, Huang XQ. Defect engineered 2D mesoporous Mo–Co–O nanosheets with crystalline-amorphous composite structure for efficient oxygen evolution. Sci China Mater. 2022;65:3470. https://doi.org/10.1007/s40843-022-2098-x.

    Article  CAS  Google Scholar 

  27. Xu JL, Li LL, Tang J, Dai L, Li XB, Ye ZG, Luo JM. Powder metallurgy synthesis of porous NiMo alloys as efficient electrocatalysts to enhance the hydrogen evolution reaction. J Alloy Compd. 2021;865: 158901. https://doi.org/10.1016/j.jallcom.2021.158901.

    Article  CAS  Google Scholar 

  28. Luo M, Peng W, Zhao Y, Lan J, Peng M, Han JH, Li HJ, Tan YW. Dilute molybdenum atoms embedded in hierarchical nanoporous copper accelerate the hydrogen evolution reaction. Scripta Mater. 2021;191:56. https://doi.org/10.1016/j.scriptamat.2020.09.011.

    Article  CAS  Google Scholar 

  29. Ge RY, Huo JJ, Li Y, Liao T, Zhang JJ, Zhu MY, Ahamad T, Li S, Liu H, Feng LY. Electrocatalyst nanoarchitectonics with molybdenum-cobalt bimetallic alloy encapsulated in nitrogen-doped carbon for water splitting reaction. J Alloy Compd. 2022;904: 164084. https://doi.org/10.1016/j.jallcom.2022.164084.

    Article  CAS  Google Scholar 

  30. Kuznetsov VV, Gamburg Y, Zhulikov VV, Krutskikh VM, Filatova EA, Trigub AL, Belyakova OA. Electrodeposited NiMo, CoMo, ReNi, and electroless NiReP alloys as cathode materials for hydrogen evolution reaction. Electrochim Acta. 2020;354: 136610. https://doi.org/10.1016/j.electacta.2020.136610.

    Article  CAS  Google Scholar 

  31. Liu YS, Zhan FQ, Zhao NA, Pan QY, Li Z, Du Y, Yang YH. Reduced mesoporous Co3O4 nanowires grown on 3D graphene as efficient catalysts for oxygen reduction and binder-free electrodes in aluminum-air batteries. J Mater Chem A. 2021;56(5):3861. https://doi.org/10.1007/s10853-020-05448-y.

    Article  ADS  CAS  Google Scholar 

  32. Liu YS, Yang LS, Xie B, Zhao N, Yang L, Zhan FQ, Pan QY, Han JJ, Wang XZ, Liu JM, Li J, Yang YH. Ultrathin Co3O4 nanosheet clusters anchored on nitrogen doped carbon nanotubes/3D graphene as binder-free cathodes for Al-air battery. Chem Eng J. 2020;381:122681. https://doi.org/10.1016/j.cej.2019.122681.

    Article  CAS  Google Scholar 

  33. Zhang WJ, Li P, Zhao HM, Zong LB, Wang L. Metal-free honeycomb-like electrocatalyst with high specific mass activity for accelerated oxygen reduction reaction in both alkaline and acidic media. Appl Surf Sci. 2022;579:152149. https://doi.org/10.1016/j.apsusc.2021.152149.

    Article  CAS  Google Scholar 

  34. Xu H, Liao Y, Gao ZF, Qing Y, Wu YQ, Xia LY. A branch-like Mo-doped Ni3S2 nanoforest as a high-efficiency and durable catalyst for overall urea electrolysis. J Mater Chem A. 2021;9(6):3418. https://doi.org/10.1039/D0TA09423D.

    Article  CAS  Google Scholar 

  35. Liu Y, Xing YY, Xu SJ, Lu YK, Sun SC, Jiang DL. Interfacing Co3Mo with CoMoOx for synergistically boosting electrocatalytic hydrogen and oxygen evolution reactions. Chem Eng J. 2022;431:133240. https://doi.org/10.1016/j.cej.2021.133240.

    Article  CAS  Google Scholar 

  36. Wen SW, Qin KQ, Liu P, Zhao NQ, Shi CS, Ma LY, Liu EZ. Ultrafine Ni(OH)2 nanoneedles on N-doped 3D rivet graphene film for high-performance asymmetric supercapacitor. J Alloy Compd. 2019;783:625. https://doi.org/10.1016/j.jallcom.2018.12.347.

    Article  CAS  Google Scholar 

  37. Lin Y, Zhang D, Gong YQ. Ultralow ruthenium loading cobalt-molybdenum binary alloy as highly efficient and super-stable electrocatalyst for water splitting. Appl Surf Sci. 2021;541:148518. https://doi.org/10.1016/j.apsusc.2020.148518.

    Article  CAS  Google Scholar 

  38. Jeghan SMN, Kim J, Lee G. Hierarchically designed CoMo marigold flower-like 3D nano-heterostructure as an efficient electrocatalyst for oxygen and hydrogen evolution reactions. Appl Surf Sci. 2021;546:149072. https://doi.org/10.1016/j.apsusc.2021.149072.

    Article  CAS  Google Scholar 

  39. Zhang PF, Liu YD, Liang TT, Ang EH, Zhang X, Ma F, Dai ZF. Nitrogen-doped carbon wrapped Co–Mo2C dual Mott-Schottky nanosheets with large porosity for efficient water electrolysis. Appl Catal B Environ. 2021;284:119738. https://doi.org/10.1016/j.apcatb.2020.119738.

    Article  CAS  Google Scholar 

  40. Ge RY, Huo JJ, Li Y, Liao T, Zhang JJ, Zhu MY, Ahamad T, Li S, Liu H, Feng LY, Li WX. Electrocatalyst nanoarchitectonics with molybdenum-cobalt bimetallic alloy encapsulated in nitrogen-doped carbon for water splitting reaction. J Alloy Compd. 2022;904:164084. https://doi.org/10.1016/j.jallcom.2022.164084.

    Article  CAS  Google Scholar 

  41. Zhao XR, He XB, Yin FX, Chen BH, Li GR, Yin HQ. Cobalt-molybdenum carbide@graphitic carbon nanocomposites: metallic cobalt promotes the electrochemical hydrogen evolution reaction. Int J Hydrog Energy. 2018;43(49):22243. https://doi.org/10.1016/j.ijhydene.2018.10.085.

    Article  CAS  Google Scholar 

  42. Niu SQ, Li SW, Du YC, Han XJ, Xu P. How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett. 2020;5:1083. https://doi.org/10.1021/acsenergylett.0c00321.

    Article  CAS  Google Scholar 

  43. Yu J, Zhang Z, Yang H, Wang PT, Shen CQ, Cheng T, Huang XQ, Shao Q. Boosting hydrogen production with ultralow working voltage by selenium vacancy-enhanced ultrafine platinum-nickel nanowires. SmartMat. 2022;3:130. https://doi.org/10.1002/smm2.1083.

    Article  CAS  Google Scholar 

  44. Liu GG, Zhou W, Chen B, Zhang QH, Cui XY, Li B, Lai ZC, Chen Y, Zhang ZC, Gu L, Zhang H. Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy. 2019;66: 104173. https://doi.org/10.1016/j.nanoen.2019.104173.

    Article  CAS  Google Scholar 

  45. Ren BW, Li DQ, Jin QY, Cui H, Wang CX. In-situ tailoring cobalt nickel molybdenum oxide components for overall water-splitting at high current densities. ChemElectroChem. 2019;6(2):413. https://doi.org/10.1002/celc.201801386.

    Article  CAS  Google Scholar 

  46. Voiry D, Chhowalla M, Gogotsi Y, Kotov NA, Li Y, Penner RM, Schaak RE, Weiss PS. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano. 2018;12(10):9635. https://doi.org/10.1021/acsnano.8b07700.

    Article  CAS  PubMed  Google Scholar 

  47. Chen DW, Dong CL, Zou YQ, Su D, Huang YC, Tao L, Dou S, Shen SH, Wang SY. In situ evolution of highly dispersed amorphous CoOx clusters for oxygen evolution reaction. Nanoscale. 2017;9(33):11969. https://doi.org/10.1039/C7NR04381C.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang ZC, Liu GG, Cui XY, Chen B, Zhu YH, Gong Y, Saleem F, Xi SB, Du YH, Borgna A, Lai ZC, Zhang QH, Li B, Zong Y, Han Y, Gu L, Zhang H. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv Mater. 2018;30:1801741. https://doi.org/10.1002/adma.201801741.

    Article  CAS  Google Scholar 

  49. Yu TQ, Xu QL, Qian GF, Chen JL, Zhang H, Luo L, Yin SB. Amorphous CoOx-decorated crystalline RuO2 nanosheets as bifunctional catalysts for boosting overall water splitting at large current density. ACS Sustain Chem Eng. 2020;8:17520. https://doi.org/10.1021/acssuschemeng.0c06782.

    Article  CAS  Google Scholar 

  50. Li XD, Yang JS, Feng XD, Hu YD, Zou HR, Zhang C, Xiong LQ, Zhang X, Liu YZ. Electrochemical performance of porous Ni–Cr–Mo–Cu alloys for hydrogen evolution reactions in alkali solution. Mater Res Express. 2020;7: 095505. https://doi.org/10.1088/2053-1591/abb562.

    Article  ADS  CAS  Google Scholar 

  51. Ding HL, Xu L, Wen CT, Zhou JJ, Li K, Zhang PL, Wang LP, Wang WW, Wang WQ, Xu XC, Ji WX, Yang Y, Chen LY. Surface and interface engineering of MoNi alloy nanograins bound to Mo-doped NiO nanosheets on 3D graphene foam for high-efficiency water splitting catalysis. Chem Eng J. 2022;440: 135847. https://doi.org/10.1016/j.cej.2022.135847.

    Article  CAS  Google Scholar 

  52. Du W, Shi YM, Zhou W, Yu YF, Zhang B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew Chem Int Ed. 2021;60:7051. https://doi.org/10.1002/anie.202015723.

    Article  CAS  Google Scholar 

  53. Chen YX, Yang KN, Jiang B, Li JX, Zeng MQ, Fu L. Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. J Mater Chem A. 2017;5(18):8187. https://doi.org/10.1039/C7TA00816C.

    Article  CAS  Google Scholar 

  54. Chen YJ, Ren ZY, Fu HY, Zhang X, Tian GH, Fu HG. NiSe-Ni0.85Se heterostructure nanoflake arrays on carbon paper as efficient electrocatalysts for overall water splitting. Small. 2018;14(25):1800763. https://doi.org/10.1002/smll.201800763.

    Article  CAS  Google Scholar 

  55. Chen J, Ge Y, Feng Q, Zhuang P, Chu H, Cao Y, Smith WR, Dong P, Ye M, Shen J. Nesting Co3Mo binary alloy nanoparticles onto molybdenum oxide nanosheet arrays for superior hydrogen evolution reaction. ACS Appl Mater. 2019;11(9):9002. https://doi.org/10.1021/acsami.8b19148.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52272296 and 51502092), the Fundamental Research Funds for the Central Universities (Nos. JKD01211601 and 1222201718002), the National Overseas High-Level Talent Youth Program in China and the Eastern Scholar Project of Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Le Xu or Lu-Yang Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5845 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LP., Li, K., Ding, HL. et al. Honeycomb-like MoCo alloy on 3D nitrogen-doped porous graphene for efficient hydrogen evolution reaction. Rare Met. 43, 1072–1082 (2024). https://doi.org/10.1007/s12598-023-02500-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02500-z

Keywords

Navigation