Skip to main content
Log in

A novel Ce0.485Zr0.485Y0.03O2 composite oxide with surface doping of Y and its application in Pd-only three-way catalyst

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The ceria-zirconia compound oxide-supported noble metal Pd (Pd@CZ) is widely used in three-way catalyst. Moreover, the surface structure of CZ plays an important role in catalytic activity of Pd. However, how to regulate the surface structure of CZ and clarify the structure–activity relationship is still a challenge. In this paper, a strategy is proposed to develop high activity Pd@CZ nanocatalysts by tuning Y doping sites in CZ. The precipitate-deposition method is developed to prepare the novel Ce0.485Zr0.485Y0.03O2 composite with surface doping of Y (CZ-Y-S). In addition, the Pd@CZ-Y-S (Pd supported on CZ-Y-S) exhibits superior catalytic activity for HC, CO, and NO oxide, wherein, for CO and C3H6 oxidation, the low-temperature activity of Pd@CZ-Y-S is still 20% higher than that of Pd@CZ-Y-B (Y bulk doping) and commercial Pd@CZ after 1000 °C/4 h aging. The effect mechanism is further studied by density functional theory (DFT) calculation. Compared with Pd@CZ-Y-B, Pd@CZ-Y-S shows the lower CO oxide reaction energy barriers due to the weaker adsorption strength of O2. The Y surface doping strategy could provide valuable insights for the development of highly efficient Pd@CZ catalyst with extensive applications.

Graphical Abstract

摘要

铈锆复合氧化物(CZ)负载贵金属Pd(Pd@CZ)后可广泛应用于三元催化剂中。此外,CZ的表面结构对Pd的催化活性起着重要的作用。然而,如何调控CZ的表面结构,阐明其构效关系仍然是一个挑战。本文提出了一种通过调节CZ中的Y掺杂位点来开发高活性的Pd@CZ纳米催化剂的策略。采用沉淀沉积法制备了Y表面掺杂(CZ-Y-S)的新型Ce0.485Zr0.485Y0.03O2复合材料。此外,Pd@CZ-Y-S(CZ-Y-S负载Pd)对HC、CO和NO催化氧化具有优越的催化活性。其中,对于CO和丙烯氧化,经过1000℃/4h老化后Pd@CZ-Y-S的低温活性仍然比Pd@CZ-Y-B(Y体相掺杂)和商业Pd@CZ高20%。通过密度泛函理论(DFT)的计算,进一步研究了其反应机理。结果表明,与Pd@CZ-Y-B相比,Pd@CZ-Y-S对O2的吸附强度较弱,使CO氧化物反应能垒较低,有利于反应物OCOO*的活化。Y表面掺杂策略可以为开发具有广泛应用的高效Pd@CZ催化剂提供有价值的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Devaiah D, Reddy LH, Park SE, Reddy BM. Ceria-zirconia mixed oxides: synthetic methods and applications. Catal Rev. 2018;60:177. https://doi.org/10.1080/01614940.2017.1415058.

    Article  CAS  Google Scholar 

  2. Liu YQ, Wang CX, Zhang AM, Shan B, Zhao YK, Peng W. Light-off temperature of precious metal-based three-way catalytic materials on basis of hierarchical clustering by recognition algorithm. Chin J Rare Met. 2022;46(7):982. https://doi.org/10.13373/j.cnki.cjrm.XY21060031.

  3. Wei ZX, Zhu YT, Liu JY, Zhang ZC, Hu WP, Xu H, Feng YZ, Ma JM. Recent advance in single-atom catalysis. Rare Met. 2021;40(4):767. https://doi.org/10.1007/s12598-020-01592-1.

    Article  CAS  Google Scholar 

  4. Cai YF, Fei C, Zhang C, Yang J, Wang L, Zhan WC, Guo YL, Cao XM, Gong XQ, Guo Y. Surface pits stabilized Au catalyst for low-temperature CO oxidation. Rare Met. 2022;41(9):3060. https://doi.org/10.1007/s12598-022-01999-y.

  5. Wang D, Yin FX, Cheng B, Xia Y, Yu JG, Ho WK. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Met. 2021;40(9):2369. https://doi.org/10.1007/s12598-021-01731-2.

    Article  CAS  Google Scholar 

  6. Li L, Chen S, Cao Y, Zhao M, Gong M, Chen Y. Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst. J Colloid Interface Sci. 2015;450:404. https://doi.org/10.1016/j.jcis.2015.03.042.

    Article  CAS  Google Scholar 

  7. Rink J, Meister N, Herbst F, Votsmeier M. Oxygen storage in three-way-catalysts is an equilibrium controlled process: experimental investigation of the redox thermodynamics. Appl Catal B. 2017;206:104. https://doi.org/10.1016/j.apcatb.2016.12.052.

    Article  CAS  Google Scholar 

  8. Twigg MV. Progress and future challenges in controlling automotive exhaust gas emissions. Appl Catal B Environ. 2007;70(1–4):2. https://doi.org/10.1016/j.apcatb.2006.02.029.

    Article  CAS  Google Scholar 

  9. Papavasiliou A, Tsetsekou A, Matsouka V, Konsolakis M, Yentekakis IV. An investigation of the role of Zr and La dopants into Ce1−xyZrxLayOδ enriched-Al2O3 TWC washcoats. Appl Catal A. 2010;382:73. https://doi.org/10.1016/j.apcata.2010.04.025.

    Article  CAS  Google Scholar 

  10. Dumont MR, Nunes EHM, Vasconcelos WL. Use of a design-of-experiments approach for preparing ceria–zirconia–alumina samples by sol-gel process. Ceram Int. 2016;42:9488. https://doi.org/10.1016/j.ceramint.2016.03.021.

    Article  CAS  Google Scholar 

  11. Benjaram MR, Gode T, Katta L. Nanosized unsupported and alumina-supported ceria-zirconia and ceria-terbia solid solutions for CO oxidation. Chin J Catal. 2011;32(5):800. https://doi.org/10.1016/S1872-2067(10)60227-6.

    Article  CAS  Google Scholar 

  12. Zhang Y, Cui M, Wang H, Zhao Z, Wang LS, Hou YK. Effects of ammonia concentration in hydrothermal treatment on structure and redox properties of cerium zirconium solid solution. J Rare Earths. 2021;39(4):419. https://doi.org/10.1016/j.jre.2020.07.018.

    Article  CAS  Google Scholar 

  13. Priya NS, Somayaji C, Kanagaraj S. Synthesis and characterization of Nd3+-doped Ce0.6Zr0.4O2 and its doping significance on oxygen storage capacity. Rare Met. 2021;40(1):231. https://doi.org/10.1007/s12598-016-0698-3.

    Article  CAS  Google Scholar 

  14. Ran R, Zhang HW, Wu XD, Fan J, Weng D. Structure and oxygen storage capacity of Pd/Pr/CeO2-ZrO2 catalyst: effects of impregnated praseodymia. J Rare Earths. 2014;32:108. https://doi.org/10.1016/S1002-0721(14)60039-9.

    Article  CAS  Google Scholar 

  15. Sun LJ, Su HW, Xu DF, Wang LL, Tang H, Liu QQ. Carbon hollow spheres as cocatalyst of Cu-doped TiO2 nanoparticles for improved photocatalytic H2 generation. Rare Met. 2022;41(6):2063. https://doi.org/10.1007/s12598-021-01936-5.

    Article  CAS  Google Scholar 

  16. Wang JQ, Shen MQ, Wang J, Gao JD, Ma J, Liu SX. Effect of cobalt doping on ceria-zirconia mixed oxide: structural characteristics, oxygen storage/release capacity and three-way catalytic performance. J Rare Earths. 2012;30(09):878. https://doi.org/10.1016/S1002-0721(12)60149-5.

    Article  CAS  Google Scholar 

  17. Guo JX, Shi ZH, Wu DD, Yin HQ, Gong MC, Chen YQ. A comparative study of SrO and BaO doping to CeO2-ZrO2: characteristic and its catalytic performance for three-way catalysts. Mater Res Bull. 2013;48:495. https://doi.org/10.1016/j.materresbull.2012.11.006.

    Article  CAS  Google Scholar 

  18. Laguna OH, Pérez A, Centeno MA, Odriozola JA. Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation. Appl Catal B Envion. 2015;176–177:385. https://doi.org/10.1016/j.apcatb.2015.04.019.

    Article  CAS  Google Scholar 

  19. Zhang Z, Fan Y, Xin Y, Li Q, Anderson JA, Zhang Z. Improvement of air/fuel ratio operating window and hydrothermal stability for Pd-Only three-way catalysts through a Pd-Ce2Zr2O8 superstructure Interaction. Environ Sci Technol. 2015;49(13):7989. https://doi.org/10.1021/acs.est.5b01361.

    Article  CAS  Google Scholar 

  20. Tahir H, Sultan M, Qadir Z. Physiochemical modification and characterization of bentonite clay and its application for the removal of reactive dyes. Int J Chem. 2013;5(3):19. https://doi.org/10.5539/ijc.v5n3p19.

    Article  CAS  Google Scholar 

  21. He CH, Zhang YX, Wang J, Fu L. Anchor single atom in h-BN assist NO synthesis NH3: a computational view. Rare Met. 2022;41(10):2022. https://doi.org/10.1007/s12598-022-02059-1.

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev L. 1996;77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  23. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41(11):7892. https://doi.org/10.1103/PhysRevB.41.7892.

    Article  CAS  Google Scholar 

  24. Anisimov VI, Zaanen J, Andersen OK. Band theory and mott insulators: hubbard U instead of stoner I. Phys Rev B. 1991;44(3):943. https://doi.org/10.1103/PhysRevB.44.943.

    Article  CAS  Google Scholar 

  25. Luo H, Tian D, Zeng C, Fu YC, Wang H. First-principles study the behavior of oxygen vacancy on the surface of ZrO2 and Zr0.97M0.03O2. Comput Condens Matter. 2017;11:1. https://doi.org/10.1016/j.cocom.2016.12.001.

    Article  Google Scholar 

  26. Aidhy DS, Zhang YW, Liu B, William J. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations. Comput Mater Sci. 2015;99:298. https://doi.org/10.1016/j.commatsci.2014.12.030.

    Article  CAS  Google Scholar 

  27. Igawa N, Ishii Y. Crystal structure of metastable tetragonal zirconia up to 1473 K. J Am Ceram Soc. 2010;84(5):1169. https://doi.org/10.1111/j.1151-2916.2001.tb00808.x.

    Article  Google Scholar 

  28. Zhao Z, Huang X, Zhang YQ, Yang JY, Cui MS, Hou YK, Feng ZY. Tailoring thermal stability of ceria-zirconia mixed oxide by doping of rare earth elements: from theory to experiment. J Rare Earths. 2022;40(8):1272. https://doi.org/10.1016/j.jre.2021.07.001.

    Article  CAS  Google Scholar 

  29. Wang Q, Cui M, Huang X, Hou Y, Yue M, Zhong Q, Zhang YQ. The effect of hydrogen peroxide on properties of Ce0.35Zr0.55La0.055Pr0.045O2 oxides and the catalytic performance used on Pd supported three-way catalyst. J Rare Earths. 2017;35:1092. https://doi.org/10.1016/j.jre.2017.04.009.

    Article  CAS  Google Scholar 

  30. Lan L, Li H, Chen S, Chen Y. Preparation of CeO2–ZrO2–Al2O3 composite with layered structure for improved Pd-only three-way catalyst. J Mater Sci. 2017;52:9615. https://doi.org/10.1007/s10853-017-1168-5.

    Article  CAS  Google Scholar 

  31. Zhao B, Wang Q, Li G, Zhou R. Effect of rare earth (La, Nd, Pr, Sm and Y) on the performance of Pd/Ce0.67Zr0.33MO2−δ three-way catalysts. J Environ Chem Eng. 2013;6:534. https://doi.org/10.1016/j.jece.2013.06.018.

    Article  CAS  Google Scholar 

  32. Li A, Yao D, Yang YW, Li ZS, Lv J, Huang SY, Wang Y, Ma XB. Active Cu0–Cuσ+ sites for the hydrogenation of carbon–oxygen bonds over Cu/CeO2 catalysts. ACS Catal. 2022;12:1315. https://doi.org/10.1021/acscatal.1c04504.

    Article  CAS  Google Scholar 

  33. Henkelman G, Uberuaga BP, Jonsson HA. Climbing image'nudges elastics band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901. https://doi.org/10.1063/1.1329672.

    Article  CAS  Google Scholar 

  34. Muravev V, Simons JF, Parastaev A, Verheijen MA, Struijs JJ, Kosinov N, Hensen EJ. Operando spectroscopy unveils the catalytic role of different palladium oxidation states in CO oxidation on Pd/CeO2 catalysts. Angew Chem Int Ed. 2022;61(23):e202200434. https://doi.org/10.1002/anie.202200434.

    Article  CAS  Google Scholar 

  35. Shan S, Petkon V, Prasai B, Wu JF, Joseph P, Skeete Z, Kim E, Mott D, Malis O, Luo J, Zhong CJ. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale. Nanoscale. 2015;7:18936. https://doi.org/10.1039/C5NR04535E.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52204376), Youth Foundation of Hebei Province (No. E2022103007), Young Elite Scientists Sponsorship Program by CAST 2021QNRC001, High Tech Zone Science and Technology Project of Yanjiao (No. YJXM211211), and Youth Fund Project of GRINM (No. G12620223129035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Qi Zhang, Yong-Ke Hou or Xiao-Wei Huang.

Ethics declarations

Conflict of interests

Xiao-Wei Huang is an editorial board member for Rare Metals and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 656 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhao, WX., Zhang, YQ. et al. A novel Ce0.485Zr0.485Y0.03O2 composite oxide with surface doping of Y and its application in Pd-only three-way catalyst. Rare Met. 43, 749–757 (2024). https://doi.org/10.1007/s12598-023-02495-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02495-7

Keywords

Navigation