Skip to main content
Log in

Promotion of reactive oxygen species activated by nanosilver surface engineering for resistant bacteria-infected skin tissue therapy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Nanosilver has been regarded as a promising alternative to traditional antibiotics for fighting pathogen-associated infections due to its efficacy toward a broad spectrum of pathogens. However, bacterial resistance to nanosilver has emerged recently. In this contribution, a surface engineering strategy based on N-halamine chemistry to address bacterial resistance to nanosilver was proposed. Using 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) as an N-halamine source, AgCl nanodots were deposited on the surface of Ag nanowires (Ag NWs) via in situ redox reaction to prepare AgCl-on-Ag NWs. After in vitro and in vivo tests, AgCl-on-Ag NWs effectively inactivated two antibiotic-resistant bacteria, ampicillin-resistant Escherichia coli (AREC) and methicillin-resistant Staphylococcus aureus (MRSA) with the minimum bactericidal concentration (MBC) as low as 10 μg·ml−1 and exhibited good biosafety against normal cells. The experimental and theoretical tests demonstrated that AgCl-on-Ag NWs worked on AREC and MASA by generating high level of reactive oxygen species under visible light irradiation, coupled with the sustained Ag+ ion release. Meanwhile, the antibacterial mechanism of AgCl-on-Ag NWs against MRSA was verified at the gene level by transcriptome analysis (RNA sequencing). Moreover, the full-thickness defect model verified that AgCl-on-Ag NWs reduced inflammatory cell infiltration and dramatically accelerated wound healing. This work provides a synergistic mechanism based on nanosilver surface engineering to eradicate the resistant bacteria that can alleviate drug resistance and develop an innovative approach for the treatment of bacterial infections.

摘要

纳米银因其对病原体广谱的抗菌功效而被认为是传统抗生素的可替代物之一,用于对抗与病原体相关的感染。然而,最近研究发现细菌对纳米银也产生了耐药性。本文提出了一种基于N-卤胺化学的表面工程策略,以解决细菌对纳米银的耐药性。使用1,3-二氯-5,5-二甲基海因(DCDMH)作为N-卤素源,通过原位氧化还原反应将AgCl纳米点沉积在Ag纳米线(Ag NWs)的表面,以制备AgCl-on-Ag NWs。通过体外和体内实验验证了AgCl-on-Ag NWs可以有效地灭活两种耐药菌,包括耐氨苄西林钠大肠杆菌(AREC)和耐甲氧西林金黄色葡萄球菌(MRSA),且最小杀菌浓度(MBC)低至10 μg·ml‒1。此外,AgCl-on-Ag NWs对正常细胞表现出良好的生物安全性。通过实验测试和理论计算证明AgCl-on-Ag NWs对AREC和MASA的杀菌机制是可见光照射下产生丰富的活性氧(ROS),以及持续的释放Ag+的协同作用机制。此外,通过转录组分析(RNA测序),AgCl-on-Ag NWs对MRSA的抗菌机制在基因水平得到了验证。最后,通过小鼠表皮创口感染的愈合模型验证了AgCl-on-Ag NWs减少了炎症细胞的浸润,极大地加速了伤口愈合。总之,这项工作提供了一种基于纳米银表面工程的协同机制,以根除耐药菌、避免耐药性,为治疗细菌感染开创了一种新的方法。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Karaman Ş, Ercan U, Bakay E, Topaloğlu N, Rosenholm J. Evolving technologies and strategies for combating antibacterial resistance in the advent of the post-antibiotic era. Adv Funct Mater. 2020;30:1908783. https://doi.org/10.1002/adfm.201908783.

    Article  CAS  Google Scholar 

  2. Wang H, Wang M, Xu X, Gao P, Xu Z, Zhang Q, Li H, Yan A, Kao R, Sun H. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat Commun. 2021;12:3331. https://doi.org/10.1038/s41467-021-23659-y.

    Article  CAS  Google Scholar 

  3. Ledger E, Mesnage S, Edwards A. Human serum triggers antibiotic tolerance in Staphylococcus aureus. Nat Commun. 2022;2041:1. https://doi.org/10.1038/s41467-022-29717-3.

    Article  CAS  Google Scholar 

  4. Fan DY, Yi Z, Feng X, Tian WZ, Xu DK, Valentino AMC, Wang Q, Sun HC. Antibacterial property of a gradient Cu-bearing titanium alloy by laser additive manufacturing. Rare Met. 2022;41(2):580. https://doi.org/10.1007/s12598-021-01826-w.

    Article  CAS  Google Scholar 

  5. Chai MZ, An MW, Zhang XY, Chu PK. In vitro and in vivo antibacterial activity of graphene oxide-modified porous TiO2 coatings under 808-nm light irradiation. Rare Met. 2022;41(2):540. https://doi.org/10.1007/s12598-021-01754-9.

    Article  CAS  Google Scholar 

  6. Abhishek Singh T, Sharma A, Tejwan N, Ghosh N, Das J, Sil P. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interface Sci. 2021;295:102495. https://doi.org/10.1016/j.cis.2021.102495

    Article  CAS  Google Scholar 

  7. Guan G, Zhang L, Zhu J, Wu H, Li W, Sun Q. Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. J Hazard Mater. 2021;402: 123542. https://doi.org/10.1016/j.jhazmat.2020.123542.

    Article  CAS  Google Scholar 

  8. Xie Y, Zhang Q, Zheng W, Jiang X. Small molecule-capped gold nanoclusters for curing skin infections. ACS Appl Mater Interfaces. 2021;30:35306. https://doi.org/10.1021/acsami.1c04944.

    Article  CAS  Google Scholar 

  9. Makvandi P, Wang C, Zare E, Borzacchiello A, Niu L, Tay F. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Adv Funct Mater. 2020;30:1910021. https://doi.org/10.1002/adfm.201910021.

    Article  CAS  Google Scholar 

  10. Xin Q, Shah H, Nawaz A, Xie W, Akram M, Batool A, Tian L, Jan S, Boddula R, Guo B, Liu Q, Gong J. Antibacterial carbon-based nanomaterials. Adv Mater. 2019;31:1804838. https://doi.org/10.1002/adma.201804838

    Article  CAS  Google Scholar 

  11. Shi L, Chen J, Teng L, Wang L, Zhu G, Liu S, Luo Z, Shi X, Wang Y, Ren L. The antibacterial applications of graphene and its derivatives. Small. 2016;12:4165. https://doi.org/10.1002/smll.201601841.

    Article  CAS  Google Scholar 

  12. Zhang H, Li L, Li QQ, Ma T, Gao JQ, Xue JB, Gao S. Graphitic carbon nitride loaded with bismuth nanoparticles displays antibacterial photocatalytic activity. Rare Met. 2022;41(5):1570. https://doi.org/10.1007/s12598-021-01921-y.

    Article  CAS  Google Scholar 

  13. Li R, Mansukhani N, Guiney L, Ji Z, Zhao Y, Chang C, French C, Miller J, Hersam M, Nel A, Xia T. Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings. ACS Nano. 2016;12:10966.https://doi.org/10.1021/acsnano.6b05692.

    Article  CAS  Google Scholar 

  14. Aksoy İ, Küçükkeçeci H, Sevgi F, Metin Ö, Patir I. Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS Appl Mater Interfaces. 2020;12:26822. https://doi.org/10.1021/acsami.0c02524.

    Article  CAS  Google Scholar 

  15. Liu W, Tao Z, Wang D, Liu Q, Wu H, Shi L, Dong A. Engineering a black -based magnetic nanosystem armed with antibacterial N-halamine polymer for recyclable blood disinfection. Chem Eng J. 2021;415:128888. https://doi.org/10.1016/j.cej.2021.128888.

    Article  CAS  Google Scholar 

  16. Huang B, Tan L, Liu X, Li J, Wu S. A facile fabrication of novel stuff with antibacterial property and osteogenic promotion utilizing red phosphorus and near-infrared light. Bioact Mater. 2019;4:17. https://doi.org/10.1016/j.bioactmat.2018.11.002.

    Article  Google Scholar 

  17. Li Z, Lu S, Liu W, Dai T, Ke J, Li X, Li R, Zhang Y, Chen Z, Chen X. Synergistic lysozyme-photodynamic therapy against resistant bacteria based on an intelligent upconversion nanoplatform. Angew Chem Int Ed. 2021;60:19201. https://doi.org/10.1002/anie.202103943

    Article  CAS  Google Scholar 

  18. Zhu YW, Sun YJ, Wang JL, Yu BR. Antimicrobial and antifouling surfaces through polydopamine bio-inspired coating. Rare Met. 2022;41(2):499. https://doi.org/10.1007/s12598-021-01871-5.

    Article  CAS  Google Scholar 

  19. Guan X, Yin H, Xu X, Xu G, Zhang Y, Zhou B, Yue W, Liu C, Sun L, Xu H, Zhang K. Tumor metabolism-engineered composite nanoplatforms potentiate sonodynamic therapy via reshaping tumor microenvironment and facilitating electron–hole pairs’ separation. Adv Funct Mater. 2020;30:2000326. https://doi.org/10.1002/adfm.202000326.

    Article  CAS  Google Scholar 

  20. Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X. Antibacterial hydrogels. Adv Sci. 2018;5:1700527. https://doi.org/10.1002/advs.2018.1700527.

    Article  Google Scholar 

  21. Qi Y, Ye Y, Ren S, Lv J, Zhang S, Che Y, Ning G. In-situ synthesis of metal nanoparticles@metal−organic frameworks: highly effective catalytic performance and synergistic antimicrobial activity. J Hazard Mater. 2020;387: 121687. https://doi.org/10.1016/j.jhazmat.2019.121687.

    Article  CAS  Google Scholar 

  22. Wang S, Zheng H, Cheng F, Liu Z, Zhang H, Wang L, Zhang Q. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 2020;20:5149. https://doi.org/10.1021/acs.nanolett.0c01371.

    Article  CAS  Google Scholar 

  23. Wang Z, Liu X, Duan Y, Huang Y. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials. 2022;280:121249. https://doi.org/10.1016/j.biomaterials.2021.121249.

    Article  CAS  Google Scholar 

  24. Qing G, Zhao X, Gong N, Chen J, Li X, Gan Y, Wang Y, Zhang Z, Zhang Y, Guo W, Luo Y, Liang X. Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multiantibiotic-resistant bacterial infection. Nat Commun. 2019;10:4336. https://doi.org/10.1038/s41467-019-12313-3.

    Article  CAS  Google Scholar 

  25. Liu J, Wu D, Zhu N, Wu Y, Li G. Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials. Trends Food Sci Tech. 2021;109:413. https://doi.org/10.1016/j.tifs.2021.01.012.

    Article  CAS  Google Scholar 

  26. Liu C, Pang Q, Wu T, Qi W, Fu W, Wang Y. A rapid visual detection of ascorbic acid through morphology transformation of silver triangular nanoplates. J Anal Test. 2021;5:210. https://doi.org/10.1007/s41664-021-00174-z.

    Article  Google Scholar 

  27. Qiu JJ, Yang TT, Li YF, Qian WH, Liu XY. Au@Ag@Pt core-shell nanorods regulating Ag release behavior endow titanium antibacterial activity and biocompatibility. Rare Met. 2022;41(2):630638. https://doi.org/10.1007/s12598-021-01799-w.

    Article  CAS  Google Scholar 

  28. Ahamed M, AlSalhi M, Siddiqui M. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411:1841. https://doi.org/10.1016/j.cca.2010.08.016.

    Article  CAS  Google Scholar 

  29. Zhang Y, Sun P, Zhang L, Wang Z, Wang F, Dong K, Liu Z, Ren J, Qu X. Silver-infused porphyrinic metal–organic framework: surface-adaptive, on demand nanoplatform for synergistic bacteria killing and wound disinfection. Adv Funct Mater. 2019;29:1808594. https://doi.org/10.1002/adfm.201808594.

    Article  CAS  Google Scholar 

  30. Kaiser J, Roesslein M, Diener L, Wichser A, Nowack B, Wick P. Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media. J Nanobiotechnol. 2017;15:5. https://doi.org/10.1186/s12951-016-0244-3.

    Article  CAS  Google Scholar 

  31. Cao F, Ju E, Zhang Y, Wang Z, Liu C, Li W, Huang Y, Dong K, Ren J, Qu X. An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano. 2017;5:4651. https://doi.org/10.1021/acsnano.7b00343.

    Article  CAS  Google Scholar 

  32. Sotiriou G, Sannomiya T, Teleki A, Krumeich F, Vörös J, Pratsinis S. Non-toxic dry-coated nanosilver for plasmonic biosensors. Adv Funct Mater. 2010;20:42507. https://doi.org/10.1002/adfm.201000985.

    Article  CAS  Google Scholar 

  33. Pecoraro R, Marino F, Salvaggio A, Capparucci F, Caro G, Iaria C, Salvo A, Rotondo A, Tibullo D, Guerriero G, Scalisi E, Zimbone M, Impellizzeri G, Bru M. Evaluation of chronic nanosilver toxicity to adult zebrafish. Front Physiol. 2017;8:1011. https://doi.org/10.3389/fphys.2017.01011.

    Article  Google Scholar 

  34. Nosaka Y, Nosaka A. Generation and detection of reactive oxygen species in photocatalysis. Chem Rev. 2017;117:11302.https://doi.org/10.1021/acs.chemrev.7b00161.

    Article  CAS  Google Scholar 

  35. Zeng J, Li Z, Jiang H, Wang X. Progress on photocatalytic semiconductor hybrids for bacterial inactivation. Mater Horiz. 2021;8:2964. https://doi.org/10.1039/d1mh00773d.

    Article  CAS  Google Scholar 

  36. Marín-Caba L, Bodelón G, Negrín-Montecelo Y, Correa-Duarte M. Sunlight-plasmonic nanostructured composites as photocatalytic coating with antibacterial properties. Adv Funct Mater. 2021;31:2105807. https://doi.org/10.1002/adfm.202105807.

    Article  CAS  Google Scholar 

  37. Qu Y, Li X, Zhang H, Huang R, Qi W, Su R, He Z. Controllable synthesis of a sponge-like Z-scheme N, S-CQDs/Bi2MoO6@TiO2 film with enhanced photocatalytic and antimicrobial activity under visible/NIR light irradiation. J Hazard Mater. 2022;429: 128310. https://doi.org/10.1016/j.jhazmat.2022.128310.

    Article  CAS  Google Scholar 

  38. Chai M, An M, Zhang X, Chu P. In vitro and in vivo antibacterial activity of graphene oxide-modified porous TiO2 coatings under 808-nm light irradiation. Rare Met. 2022;41(2):540. https://doi.org/10.1007/s12598-021-01754-9.

    Article  CAS  Google Scholar 

  39. Zhang X, Wang P, Meng W, Cui E, Zhang Q, Wang Z, Zheng Z, Liu Y, Cheng H, Dai Y, Huang B. Photococatalytic anticancer performance of naked Ag/AgCl nanoparticles. Chem Eng J. 2022;428:131265. https://doi.org/10.1016/j.cej.2021.131265..

    Article  CAS  Google Scholar 

  40. Zhang X, Huang C, Mahmud S, Guo X, Hu X, Jing Y, Su S, Zhu J. Sodium alginate fasten cellulose nanocrystal Ag@AgCl ternary nanocomposites for the synthesis of antibacterial hydrogels. Compos Commun. 2021;25:100717. https://doi.org/10.1016/j.coco.2021.100717.

    Article  Google Scholar 

  41. Tian X, Anand U, Mirsaidov U, Zheng H. Spontaneous reshaping and splitting of AgCl nanocrystals under electron beam illumination. Small. 2018;14:1803231. https://doi.org/10.1002/smll.201803231.

    Article  CAS  Google Scholar 

  42. Liang Y, Lin S, Liu L, Hu J, Cui W. Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: enhanced photocatalytic degradation under visible light irradiation. Appl Catal B Environ. 2015;164:192. https://doi.org/10.1016/j.apcatb.2014.08.048.

    Article  CAS  Google Scholar 

  43. Zhang H, Fan X, Quan X, Chen S, Yu H. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Environ Sci Technol. 2011;45:5731. https://doi.org/10.1021/es2002919.

    Article  CAS  Google Scholar 

  44. Li P, Wu H, Dong A. Ag/AgX nanostructures serving as antibacterial agents: achievements and challenges. Rare Met. 2022;41(2):519. https://doi.org/10.1007/s12598-021-01822-0.

    Article  CAS  Google Scholar 

  45. Gou J, Li X, Zhang H, Guo R, Deng X, Cheng X, Xie M, Cheng Q. Synthesis of silver/silver chloride/exfoliated graphite nano-photocatalyst and its enhanced visible light photocatalytic mechanism for degradation of organic pollutants. J Ind Eng Chem. 2018;59:99. https://doi.org/10.1016/j.jiec.2017.10.011.

    Article  CAS  Google Scholar 

  46. Choi S, Han S, Jung D, Hwang H, Lim C, Bae S, Park O, Tschabrunn C, Lee M, Bae S, Yu J, Ryu J, Lee SW, Park K, Kang P, Lee W, Nezafat R, Hyeon T, Kim DH. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat Nanotechnol. 2018;13:1048. https://doi.org/10.1038/s41565-018-0226-8.

    Article  CAS  Google Scholar 

  47. Li Q, Chang S, Di Wu, Bao S, Zeng C, Nasir M, Tian B, Zhang J. Synthesis of cubic Ag@AgCl and Ag@AgBr plasmonic photocatalysts and comparison of their photocatalytic activity for degradation of methyl orange and 2,4-dichlorophenol. Res Chem Intermed. 2018;44:4651. https://doi.org/10.1007/s11164-018-3267-6.

    Article  CAS  Google Scholar 

  48. Gao D, Liu W, Xu Y, Wang P, Fan J, Yu H. Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: one-step photoinduced deposition and its improved H2-evolution activity. Appl Catal B Environ. 2020;260: 118190. https://doi.org/10.1016/j.apcatb.2019.118190.

    Article  CAS  Google Scholar 

  49. Ye L, Liu J, Gong C, Tian L, Peng T, Zan L. Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal. 2012;2:1677–83. https://doi.org/10.1021/cs300213m.

    Article  CAS  Google Scholar 

  50. Yu P, Zhou X, Li Z, Yan Y. Inactivation and change of tetracycline-resistant Escherichia coli in secondary effluent by visible light-driven photocatalytic process using Ag/AgBr/g-C3N4. Sci Total Environ. 2020;705: 135639. https://doi.org/10.1016/j.scitotenv.2019.135639.

    Article  CAS  Google Scholar 

  51. Yan Y, Zhou X, Yu P, Li Z, Zheng T. Characteristics, mechanisms and bacteria behavior of photocatalysis with a solid Z-scheme Ag/AgBr/g-C3N4 nanosheet in water disinfection. Appl Catal A Gen. 2020;590: 117282. https://doi.org/10.1016/j.apcata.2019.117282.

    Article  CAS  Google Scholar 

  52. Bao S, Wang Z, Zhang J, Tian B. Facet-heterojunction-based Z-scheme BiVO4 010 microplates decorated with AgBr-Ag nanoparticles for the photocatalytic inactivation of bacteria and the decomposition of organic contaminants. ACS Appl Nano Mater. 2020;3:8604. https://doi.org/10.1021/acsanm.0c00703.

    Article  CAS  Google Scholar 

  53. Thangudu S, Kulkarni S, Vankayala R, Chiangc C, Hwang K. Photosensitized reactive chlorine species-mediated therapeutic destruction of drug-resistant bacteria using plasmonic core-shell Ag@AgCl nanocubes as an external nanomedicine. Nanoscale. 2020;12:12970. https://doi.org/10.1039/d0nr01300e.

    Article  CAS  Google Scholar 

  54. McEvoy J, Zhang Z. Synthesis and characterization of magnetically separable Ag/AgCl–magnetic activated carbon composites for visible light induced photocatalytic detoxification and disinfection. Appl Catal B Environ. 2014;160–161:267. https://doi.org/10.1016/j.apcatb.2014.04.043.

    Article  CAS  Google Scholar 

  55. Li M, Li D, Zhou Z, Wang P, Mi X, Xia Y, Wang H, Zhan S, Li Y, Li L. Plasmonic Ag as electron-transfer mediators in Bi2MoO6/Ag-AgCl for efficient photocatalytic inactivation of bacteria. Chem Eng J. 2020;382: 122762. https://doi.org/10.1016/j.cej.2019.122762.

    Article  CAS  Google Scholar 

  56. Liu Q, Xu Y, Wang J, Xie M, Wei W, Huang L, Xu H, Song Y, Li H. Fabrication of Ag/AgCl/ZnFe2O4 composites with enhanced photocatalytic activity for pollutant degradation and E. coli disinfection. Colloids Surf A Physicochem Eng Aspects. 2018;553:114. https://doi.org/10.1016/j.colsurfa.2018.05.019.

    Article  CAS  Google Scholar 

  57. Wang H, Shi H, Li H, Tian X, Wu Z, Li S. Decoration of Fe3O4 base material with Ag/AgCl nanoparticle as recyclable visible-light driven photocatalysts for highly-efficient photocatalytic disinfection of Escherichia coli. Solid State Sci. 2020;102:106159. https://doi.org/10.1016/j.solidstatesciences.2020.106159.

    Article  CAS  Google Scholar 

  58. Wu S, Xu C, Zhu Y, Zheng L, Zhang L, Hu Y, Yu B, Wang Y, Xu F. Biofilm-sensitive photodynamic nanoparticles for enhanced penetration and antibacterial efficiency. Adv Funct Mater. 2021;31:2103591. https://doi.org/10.1002/anie.202003610.

    Article  CAS  Google Scholar 

  59. Wang R, Shi M, Xu F, Qiu Y, Zhang P, Shen K, Zhao Q, Yu J, Zhang Y. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat Commun. 2020;11:4465. https://doi.org/10.1038/s41467-020-18267-1.

    Article  CAS  Google Scholar 

  60. Wang G, Tang K, Meng Z, Liu P, Mo S, Mehrjou B, Wang H, Liu X, Wu Z, Chu P. A quantitative bacteria monitoring and killing platform based on electron transfer from bacteria to a semiconductor. Adv Mater. 2020;32:2003616. https://doi.org/10.1002/adma.202003616.

    Article  CAS  Google Scholar 

  61. Zhang Y, Liu W, Li Y, Yang Y, Dong A, Li Y. 2D graphdiyne oxide serves as a superior new generation of antibacterial agents. iScience. 2019;19:662. https://doi.org/10.1016/j.isci.2019.08.019.

    Article  CAS  Google Scholar 

  62. Zhou Y, Chen R, He T, Xu K, Du D, Zhao N, Cheng X, Yang J, Shi H, Lin Y. Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing. ACS Appl Mater Interfaces. 2016;8:15067. https://doi.org/10.1021/acsami.6b03021.

    Article  CAS  Google Scholar 

  63. Xin X, Li S, Zhang N, Tang Z, Xu Y. 3D graphene/AgBr/Ag cascade aerogel for efficient photocatalytic disinfection. Appl Catal B Environ. 2019;245(15):343. https://doi.org/10.1016/j.apcatb.2018.12.066.

    Article  CAS  Google Scholar 

  64. Guest R, Raivio T. Role of the gram-negative envelope stress response in the presence of antimicrobial agents. Trends Microbiol. 2016;24(5):377. https://doi.org/10.1016/j.tim.2016.03.001.

    Article  CAS  Google Scholar 

  65. Xia D, An T, Li G, Wang W, Zhao H, Wong P. Synergistic photocatalytic inactivation mechanisms of bacteria by graphene sheets grafted plasmonic Ag/AgX (X = Cl, Br, I) composite photocatalyst under visible light irradiation. Water Res. 2016;99:149. https://doi.org/10.1016/j.watres.2016.04.055.

    Article  CAS  Google Scholar 

  66. Shi H, Li G, Sun H, An T, Zhao H, Wong P. Visible-light-driven photocatalytic inactivation of E. coli by Ag/AgX-CNTs (X = Cl, Br, I) plasmonic photocatalysts: bacterial performance and deactivation mechanism. Appl Catal B Environ. 2014;158–159:301. https://doi.org/10.1016/j.apcatb.2014.04.033.

    Article  CAS  Google Scholar 

  67. Mao C, Xiang Y, Liu X, Cui Z, Yang X, Yeung K, Pan H, Chu P, Wu S. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano. 2017;11:90101. https://doi.org/10.1021/acsnano.7b03513.

    Article  CAS  Google Scholar 

  68. Beck S, Ryu H, Boczek L, Cashdollar J, Jeanis K, Rosenblum J, Lawal O, Linden K. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Res. 2017;109:207. https://doi.org/10.1016/j.watres.2016.11.024.

    Article  CAS  Google Scholar 

  69. Zhu H, Wang S, Wang Y, Song C, Yao Q, Yuan X, Xie J. Gold nanocluster with AIE: a novel photodynamic antibacterial and deodorant molecule. Biomaterials. 2022;288:121695. https://doi.org/10.1016/j.biomaterials.2022.121695.

    Article  CAS  Google Scholar 

  70. Lee M, Xu W, Zheng L, Yu B, Leung A, Kwok R, Lam J, Xu F, Wang D, Tang B. Ultrafast discrimination of Gram-positive bacteria and highly efficient photodynamic antibacterial therapy using near-infrared photosensitizer with aggregation-induced emission characteristics. Biomaterials. 2020;230:119582. https://doi.org/10.1016/j.biomaterials.2019.119582.

    Article  CAS  Google Scholar 

  71. Lin X, He J, Li W, Qi Y, Hu H, Zhang D, Xu F, Chen X, Zhou M. Lung-targeting lysostaphin microspheres for methicillin-resistant Staphylococcus aureus pneumonia treatment and prevention. ACS Nano. 2021;15:16625. https://doi.org/10.1021/cs300213m.

    Article  CAS  Google Scholar 

  72. Wang Y, Malkmes M, Jiang C, Wang P, Zhu L, Zhang H, Zhang Y, Huang H, Jiang L. Antibacterial mechanism and transcriptome analysis of ultra-small gold nanoclusters as an alternative of harmful antibiotics against Gram-negative bacteria. J Hazard Mater. 2021;416:126236.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22062017 and 22164015), the Inner Mongolia Autonomous Region Program for Key Science and Technology (No. 2020GG0161), the Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2019JQ03), the Ordos City Program for Key Science and Technology (No. 2022YY003), the Open Project of State Key Laboratory of Supramolecular Structure and Materials (No. sklssm2022021), the Program of Higher-Level Talents of Inner Mongolia University (No. 10000-22311201/035) and the Science and Technology Research Projects in Colleges and Universities of Inner Mongolia Autonomous Region (No. NJZZ23091).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Kang, De-Zhi Yang, Hai-Xia Wu or Alideertu Dong.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5419 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, PP., Zhang, Y., Wang, C. et al. Promotion of reactive oxygen species activated by nanosilver surface engineering for resistant bacteria-infected skin tissue therapy. Rare Met. 42, 4167–4183 (2023). https://doi.org/10.1007/s12598-023-02481-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02481-z

Keywords

Navigation