Skip to main content
Log in

A lithium–tin fluoride anode enabled by ionic/electronic conductive paths for garnet-based solid-state lithium metal batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The high energy density and stability of solid-state lithium metal batteries (SSLMBs) have garnered great attention. Garnet-type oxides, especially Li6.4La3Zr1.4Ta0.6O12 (LLZTO), with high ionic conductivity, wide electrochemical window, and stability to Li metal anode, are promising solid-state electrolyte (SSEs) materials for SSLMBs. However, Li/LLZTO interface issues including high interface resistance, inhomogeneous Li deposition, and Li dendrite growth have hindered the practical application of SSLMBs. Herein, a multi-functional Li–SnF2 composite anode with Li, LiF, and Li-Sn alloy was specifically designed and prepared. The composite anode improves the wettability to LLZTO, constructing an intimate contact interface between it and LLZTO. Meanwhile, ionic/electronic conductive paths in situ formed at the interface can effectively uniform Li deposition and suppress Li dendrite. The solid-state symmetric cell exhibits low interface resistance (11 Ω·cm2) and high critical current density (1.3 mA·cm−2) at 25 °C. The full SSLMB based on LiFePO4 or LiNi0.5Co0.2Mn0.3O2 cathode also shows stable cycling performance and high rate capability. This work provides a new composite anode strategy for achieving high-energy density and high-safety SSLMBs.

Graphical abstract

摘要

固态锂金属电池(SSLMBs) 因其高能量密度和稳定性引起了人们的兴趣。石榴石型氧化物特别是Li6.4La3Zr1.4Ta0.6O12(LLZTO) 因其高的离子电导率、宽的电化学窗口、和对锂金属负极的稳定性而成为SSLMBs有前途的固态电解质 (SSEs) 材料。然而, Li/LLZTO界面存在高的界面电阻、锂的不均匀沉积和锂枝晶生长等问题, 严重阻碍了SSLMBs的实际应用。本研究专门设计并制备了一种由Li、LiF、和Li − Sn合金共同构成的多功能Li − SnF2复合负极。一方面, 该复合负极改善了其对LLZTO的润湿能力, 从而使负极/LLZTO界面紧密接触。另一方面, 在界面处原位形成的离子/电子导电通道能够有效地均匀锂沉积和抑制锂枝晶。固态对称电池在室温下显示出低的界面电阻 (11 Ω·cm2) 和高的临界电流密度 (1.3 mA·cm−2) 。匹配LiFePO4或LiNi0.5Co0.2Mn0.3O2正极的全SSLMB同样表现出稳定的循环和倍率性能。因此, 这项工作为实现高能量密度和高安全性的SSLMB提供了一种新的复合负极策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ye LH, Li X. A dynamic stability design strategy for lithium metal solid state batteries. Nature. 2021;593(7858):218. https://doi.org/10.1038/s41586-021-03486-3.

    Article  CAS  Google Scholar 

  2. Wang D, Tian KH, Wang J, Wang ZY, Luo SH, Liu YG, Wang Q, Zhang YH, Hao AM, Yi TF. Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance. Rare Met. 2021;40(9):2464. https://doi.org/10.1007/s12598-021-01715-2.

    Article  CAS  Google Scholar 

  3. Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020;5(3):229. https://doi.org/10.1038/s41578-019-0165-5.

    Article  CAS  Google Scholar 

  4. Guo YM, Zhang LJ, Xi LD, Kang J. Advances of carbon materials as loaders for transition metal oxygen/sulfide anode materials. Rare Met. 2021;45(10):1241. https://doi.org/10.13373/j.cnki.cjrm.XY20040016.

    Article  Google Scholar 

  5. Song SP, Yang C, Jiang CZ, Wu YM, Guo R, Sun H, Yang JL, Xiang Y, Zhang XK. Increasing ionic conductivity in Li0.33La0.56TiO3 thin-films via optimization of processing atmosphere and temperature. Rare Met. 2022;41(1):179. https://doi.org/10.1007/s12598-021-01782-5.

    Article  CAS  Google Scholar 

  6. Zhang L, Fan HL, Dang YZ, Zhuang QC, Arandiyan H, Wang Y, Cheng NY, Sun HY, Garza HHP, Zheng RG, Wang ZY, Mofarah SS, Koshy P, Bhargava SK, Cui YH, Shao ZP, Liu YG. Recent advances in in situ and operando characterization techniques for Li7La3Zr2O12-based solid-state lithium batteries. Mater Horizons. 2023;10(5):1479. https://doi.org/10.1039/d3mh00135k.

    Article  CAS  Google Scholar 

  7. Zhang L, Zhuang QC, Zheng RG, Wang ZY, Sun HY, Arandiyan H, Wang Y, Liu YG, Shao ZP. Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density. Energy Storage Mater. 2022;49:299. https://doi.org/10.1016/j.ensm.2022.04.026.

    Article  Google Scholar 

  8. Chen LH, Huang ZY, Chen SL, Tong RA, Wang HL, Shao G, Wang CA. In situ polymerization of 1,3-dioxolane infiltrating 3D garnet framework with high ionic conductivity and excellent interfacial stability for integrated solid-state Li metal battery. Rare Met. 2022;41(11):3694. https://doi.org/10.1007/s12598-022-02080-4.

    Article  CAS  Google Scholar 

  9. Yoon K, Lee S, Oh K, Kang K. Challenges and strategies towards practically feasible solid-state lithium metal batteries. Adv Mater. 2022;34(4):2104666. https://doi.org/10.1002/adma.202104666.

    Article  CAS  Google Scholar 

  10. Han X, Chen JZ, Chen MF, Zhou WJ, Zhou XY, Wang GW, Wong CP, Liu B, Luo LS, Chen SY, Shi SQ. Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes. Energy Storage Mater. 2021;39:250. https://doi.org/10.1016/j.ensm.2021.04.029.

    Article  Google Scholar 

  11. Han X, Wang SY, Xu YB, Zhong GM, Zhou Y, Liu B, Jiang XY, Wang X, Li Y, Zhang ZQ, Chen SY, Wang CM, Yang Y, Zhang WQ, Wang JL, Liu J, Yang JH. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy Environ Sci. 2021;14(9):5044. https://doi.org/10.1039/d1ee01494c.

    Article  CAS  Google Scholar 

  12. Zhao C, Liu ZQ, Weng W, Wu M, Yan XY, Yang J, Lu HM, Yao XY. Stabilized cathode/sulfide solid electrolyte interface via Li2ZrO3 coating for all-solid-state batteries. Rare Met. 2022;41(11):3639. https://doi.org/10.1007/s12598-022-02086-y.

    Article  CAS  Google Scholar 

  13. Xiao YH, Wang Y, Bo SH, Kim JC, Miara LJ, Ceder G. Understanding interface stability in solid-state batteries. Nat Rev Mater. 2020;5(2):105. https://doi.org/10.1038/s41578-019-0157-5.

    Article  CAS  Google Scholar 

  14. Lv Q, Jiang YP, Wang B, Chen YJ, Jin F, Wu BC, Ren HZ, Zhang N, Xu RY, Li YH, Zhang TR, Zhou Y, Wang DL, Liu HK, Dou SX. Suppressing lithium dendrites within inorganic solid-state electrolytes. Cell Rep Phys Sci. 2022;3(1):100706. https://doi.org/10.1016/j.xcrp.2021.100706.

    Article  CAS  Google Scholar 

  15. Yang LJ, Lu ZL, Qin YX, Wu C, Fu CK, Gao YZ, Liu J, Jiang L, Du ZY, Xie ZY, Li ZQ, Kong FD, Yin GP. Interrelated interfacial issues between a Li7La3Zr2O12-based garnet electrolyte and Li anode in the solid-state lithium battery: a review. J Mater Chem A. 2021;9(10):5952. https://doi.org/10.1039/d0ta08179e.

    Article  CAS  Google Scholar 

  16. Sharafi A, Yu SH, Naguib M, Lee M, Ma C, Meyer HM, Nanda J, Chi MF, Siegel DJ, Sakamoto J. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J Mater Chem A. 2017;5(26):13475. https://doi.org/10.1039/c7ta03162a.

    Article  CAS  Google Scholar 

  17. Jin Y, McGinn PJ. Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery. J Power Sources. 2013;239:326. https://doi.org/10.1016/j.jpowsour.2013.03.155.

    Article  CAS  Google Scholar 

  18. Guo Y, Cheng J, Zeng Z, Li Y, Zhang H, Li D, Ci L. Li2CO3: insights into its blocking effect on Li-ion transfer in garnet composite electrolytes. ACS Appl Energy Mater. 2022;5(3):2853–61. https://doi.org/10.1021/acsaem.1c03529.

    Article  CAS  Google Scholar 

  19. Qin ZW, Xie YM, Meng XC, Qian DL, Shan C, Mao DX, He G, Zheng Z, Wan L, Huang YX. Interface engineering for garnet-type electrolyte enables low interfacial resistance in solid-state lithium batteries. Chem Eng J. 2022;447:137538. https://doi.org/10.1016/j.cej.2022.137538.

    Article  CAS  Google Scholar 

  20. Ruan Y, Lu Y, Huang X, Su J, Sun C, Jin J, Wen ZY. Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries. J Mater Chem A. 2019;7(24):14565. https://doi.org/10.1039/c9ta01911a.

    Article  CAS  Google Scholar 

  21. Huo HY, Chen Y, Zhao N, Lin XT, Luo J, Yang XF, Liu YL, Guo XX, Sun XL. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy. 2019;61:119. https://doi.org/10.1016/j.nanoen.2019.04.058.

    Article  CAS  Google Scholar 

  22. Li YT, Chen X, Dolocan A, Cui ZM, Xin S, Xue LG, Xu HH, Park K, Goodenough JB. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J Am Chem Soc. 2018;140(20):6448. https://doi.org/10.1021/jacs.8b03106.

    Article  CAS  Google Scholar 

  23. Wang X, Shen X, Zhang P, Zhou AJ, Zhao JB. Promoted Li+ conduction in PEO-based all-solid-state electrolyte by hydroxyl-modified glass fiber fillers. Rare Met. 2022;42(3):875. https://doi.org/10.1007/s12598-022-02218-4.

    Article  CAS  Google Scholar 

  24. Sharafi A, Kazyak E, Davis AL, Yu SH, Thompson T, Siegel DJ, Dasgupta NP, Sakamoto J. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem Mat. 2017;29(18):7961. https://doi.org/10.1021/acs.chemmater.7b03002.

    Article  CAS  Google Scholar 

  25. Xu HF, Zhu Q, Zhao Y, Du ZG, Li B, Yang SB. Phase-changeable dynamic conformal electrode/electrolyte interlayer enabling pressure-independent solid-state lithium metal batteries. Adv Mater. 2023;35(18):2212111. https://doi.org/10.1002/adma.202212111.

    Article  CAS  Google Scholar 

  26. Liu M, Xie WH, Li B, Wang YB, Li GQ, Zhang ST, Wen YH, Qiu JY, Chen JH, Zhao PC. Garnet Li7La3Zr2O12-based solid-state lithium batteries achieved by in situ thermally polymerized gel polymer electrolyte. ACS Appl Mater Interfaces. 2022;14(38):43116. https://doi.org/10.1021/acsami.2c09028.

    Article  CAS  Google Scholar 

  27. Gutierrez-Pardo A, Aguesse F, Fernandez-Carretero F, Siriwardana AI, Garcia-Luis A, Llordes A. Improved electromechanical stability of the Li metal/garnet ceramic interface by a solvent-free deposited OIPC soft layer. ACS Appl Energy Mater. 2021;4(3):2388. https://doi.org/10.1021/acsaem.0c02439.

    Article  CAS  Google Scholar 

  28. Dubey R, Sastre J, Cancellieri C, Okur F, Forster A, Pompizii L, Priebe A, Romanyuk YE, Jeurgens LPH, Kovalenko MV, Kravchyk KV. Building a better Li-garnet solid electrolyte/metallic Li interface with antimony. Adv Energy Mater. 2021;11(39):2102086. https://doi.org/10.1002/aenm.202102086.

    Article  CAS  Google Scholar 

  29. Cui J, Kim JH, Yao SS, Guerfi A, Paolella A, Goodenough JB, Khani H. Exploration of metal alloys as zero-resistance interfacial modification layers for garnet-type solid electrolytes. Adv Funct Mater. 2023;33(10):2210192. https://doi.org/10.1002/adfm.202210192.

    Article  CAS  Google Scholar 

  30. Liao JL, Zhang S, Bai TS, Ji FJ, Li DP, Cheng J, Zhang HQ, Lu JY, Gao Q, Ci LJ. A ZnO decorated 3D copper foam as a lithiophilic host to construct composite lithium metal anodes for Li-O2 batteries. Rare Met. 2023;42(6):1969. https://doi.org/10.1007/s12598-023-02281-5.

    Article  CAS  Google Scholar 

  31. Liang YH, Wu WB, Li DP, Wu H, Gao CC, Chen ZJ, Ci LJ, Zhang JH. Highly stable lithium metal batteries by regulating the lithium nitrate chemistry with a modified eutectic electrolyte. Adv Energy Mater. 2022;12(47):2202493. https://doi.org/10.1002/aenm.202202493.

    Article  CAS  Google Scholar 

  32. Zhu FJ, Deng WT, Zhang BC, Wang HJ, Xu LQ, Liu HX, Luo Z, Zou GQ, Hou HS, Ji XB. In-situ construction of multifunctional interlayer enabled dendrite-free garnet-based solid-state batteries. Nano Energy. 2023;111:108416. https://doi.org/10.1016/j.nanoen.2023.108416.

    Article  CAS  Google Scholar 

  33. Chen Y, Qian J, Hu X, Ma YT, Li Y, Xue TY, Yu TY, Li L, Wu F, Chen RJ. Constructing a uniform and stable mixed conductive layer to stabilize the solid-state electrolyte/Li interface by cold bonding at mild conditions. Adv Mater. 2023;35(18):2212096. https://doi.org/10.1002/adma.202212096.

    Article  CAS  Google Scholar 

  34. Chen BT, Zhang JC, Zhang TR, Wang RY, Zheng J, Zhai YW, Liu XF. Constructing a superlithiophilic 3D burr-microsphere interface on garnet for high-rate and ultra-stable solid-state Li batteries. Adv Sci. 2023;10(11):2207056. https://doi.org/10.1002/advs.202207056.

    Article  CAS  Google Scholar 

  35. Dai QS, Yao JM, Du CC, Ye HJ, Gao ZY, Zhao J, Chen JZ, Su Y, Li H, Fu XJ, Yan JT, Zhu DD, Zhang XD, Li MY, Luo ZY, Qiu HL, Huang Q, Zhang LQ, Tang YF, Huang JY. Cryo-EM studies of atomic-scale structures of interfaces in garnet-type electrolyte based solid-state batteries. Adv Funct Mater. 2022;32(51):2208682. https://doi.org/10.1002/adfm.202208682.

    Article  CAS  Google Scholar 

  36. Duan J, Wu WY, Nolan AM, Wang TR, Wen JY, Hu CC, Mo YF, Luo W, Huang YH. Lithium-graphite paste: an interface compatible anode for solid-state batteries. Adv Mater. 2019;31(10):1807243. https://doi.org/10.1002/adma.201807243.

    Article  CAS  Google Scholar 

  37. Liu YN, Xiao Z, Zhang WK, Zhang J, Huang H, Gan YP, He XP, Kumar GG, Xia Y. Poly(m-phenylene isophthalamide)-reinforced polyethylene oxide composite electrolyte with high mechanical strength and thermostability for all-solid-state lithium metal batteries. Rare Met. 2022;41(11):3762. https://doi.org/10.1007/s12598-022-02065-3.

    Article  CAS  Google Scholar 

  38. Han FD, Westover AS, Yue J, Fan XL, Wang F, Chi MF, Leonard DN, Dudney N, Wang H, Wang CS. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy. 2019;4(3):187. https://doi.org/10.1038/s41560-018-0312-z.

    Article  CAS  Google Scholar 

  39. Liu XM, Garcia-Mendez R, Lupini AR, Cheng YQ, Hood ZD, Han FD, Sharafi A, Idrobo JC, Dudney NJ, Wang CS, Ma C, Sakamoto J, Chi MF. Local electronic structure variation resulting in Li “filament” formation within solid electrolytes. Nat Mater. 2021;20(11):1485. https://doi.org/10.1038/s41563-021-01019-x.

    Article  CAS  Google Scholar 

  40. Wei J, Yang ZG, Lu GJ, Hu XL, Li ZY, Wang RH, Xu CH. Enabling an electron/ion conductive composite lithium anode for solid-state lithium-metal batteries with garnet electrolyte. Energy Storage Mater. 2022;53:204. https://doi.org/10.1016/j.ensm.2022.08.041.

    Article  Google Scholar 

  41. Huang YL, Shao BW, Han FD. Li alloy anodes for high-rate and high-areal-capacity solid-state batteries. J Mater Chem A. 2022;10(23):12350. https://doi.org/10.1039/d2ta02339c.

    Article  CAS  Google Scholar 

  42. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1(1):011002. https://doi.org/10.1063/1.4812323.

    Article  CAS  Google Scholar 

  43. Lee K, Han S, Lee J, Lee S, Kim J, Ko YM, Kim S, Yoon K, Song JH, Noh JH, Kang K. Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett. 2022;7(1):381. https://doi.org/10.1021/acsenergylett.1c02332.

    Article  CAS  Google Scholar 

  44. Zhao B, Ma WC, Li BB, Hu XT, Lu SY, Liu XY, Jiang Y, Zhang JJ. A fast and low-cost interface modification method to achieve high-performance garnet-based solid-state lithium metal batteries. Nano Energy. 2022;91:10. https://doi.org/10.1016/j.nanoen.2021.106643.

    Article  CAS  Google Scholar 

  45. Chen L, Tong RA, Zhang J, Wang H, Shao G, Dong Y, Wang CA. Reactive magnesium nitride additive: a drop-in solution for lithium/garnet wetting in all-solid-state batteries. Angew Chem-Int Edit. 2023;62(27):e202305099. https://doi.org/10.1002/anie.202305099.

    Article  CAS  Google Scholar 

  46. Santhosha AL, Medenbach L, Buchheim JR, Adelhelm P. The indium-lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batteries Supercaps. 2019;2(6):524. https://doi.org/10.1002/batt.201800149.

    Article  CAS  Google Scholar 

  47. Raj V, Venturi V, Kankanallu VR, Kuiri B, Viswanathan V, Aetukuri NPB. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat Mater. 2022;21(9):1050. https://doi.org/10.1038/s41563-022-01264-8.

    Article  CAS  Google Scholar 

  48. Cui J, Yao SS, Guerfi A, Kim C, Goodenough JB, Khani H. Melt-quenching of artificial metallic interlayer enables a resistance-free garnet/lithium interface for all-solid-state lithium-metal batteries. Energy Storage Mater. 2022;53:899. https://doi.org/10.1016/j.ensm.2022.10.002.

    Article  Google Scholar 

  49. Wan Z, Shi K, Huang Y, Yang L, Yun Q, Chen L, He YB. Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achieve excellent cycling stability of all-solid-state battery. J Power Sour. 2021;505:230062. https://doi.org/10.1016/j.jpowsour.2021.230062.

    Article  CAS  Google Scholar 

  50. Zhang L, Meng QK, Dai Y, Feng XP, Shen M, Zhuang QC, Ju ZC, Zheng RG, Wang ZY, Cui YH, Sun HY, Liu YG. Ion/electron conductive layer with double-layer-like structure for dendrite-free solid-state lithium metal batteries. Nano Energy. 2023;113:108573. https://doi.org/10.1016/j.nanoen.2023.108573.

    Article  CAS  Google Scholar 

  51. Cheng AR, He X, Wang RX, Shan B, Wang KL, Jiang K. Low-cost molten salt coating enabling robust Li/garnet interface for dendrite-free all-solid-state lithium batteries. Chem Eng J. 2022;450:138236. https://doi.org/10.1016/j.cej.2022.138236.

    Article  CAS  Google Scholar 

  52. Wang TR, Duan J, Zhang B, Luo W, Ji X, Xu HH, Huang Y, Huang LQ, Song ZY, Wen JY, Wang CS, Huang YH, Goodenough JB. A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy Environ Sci. 2022;15(3):1325. https://doi.org/10.1039/d1ee03604a.

    Article  CAS  Google Scholar 

  53. Zhao B, Ma W, Li B, Hu X, Lu S, Liu X, Jiang Y, Zhang J. A fast and low-cost interface modification method to achieve high-performance garnet-based solid-state lithium metal batteries. Nano Energy. 2022;91:106643. https://doi.org/10.1016/j.nanoen.2021.106643.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52177208, 52171202, 51971055 and 51871046) and the National Safety Academic Fund (Nos. U1930208, U2030206 and U1730136).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan-Chao Zhuang, Run-Guo Zheng or Yan-Guo Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6595 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Meng, QK., Feng, XP. et al. A lithium–tin fluoride anode enabled by ionic/electronic conductive paths for garnet-based solid-state lithium metal batteries. Rare Met. 43, 575–587 (2024). https://doi.org/10.1007/s12598-023-02468-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02468-w

Keywords

Navigation