Skip to main content
Log in

Engineering molecular regulation for SiOx with long-term stable cycle and high Coulombic efficiency as lithium-ion battery anodes

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In the current situation where the practical application of silicon anode materials encounters great challenges, silicon oxide (SiOx, 0 ≤ x ≤ 2) has attracted the attention of researchers due to its relatively small volume expansion, stable cycling performance, and low cost, which is possible to realize commercial applications earlier than silicon anode. However, it remains a challenge to prepare SiOx materials with long-term stable cycling performance and high Coulombic efficiency using low-cost methods. In this work, SiOx anode material with high Coulombic efficiency and good long-term cycling stability was prepared at a low cost by hydrolysis of siloxane and in situ polymerization of phenolic resin. The hydrolysis of siloxane was further regulated by different silane coupling agents to regulate the size and microstructure of prepared SiOx materials, which displayed the substantially improved electrochemical performance. The excellent electrochemical performance of SiOx prepared by regulated hydrolysis of siloxane with silane coupling agents is attributed to the effect of silane coupling agent on size and microstructure of SiOx, revealing that the strategy of modulating the hydrolysis of siloxane by silane coupling agent is a potential method to prepare high-performance SiOx materials.

摘要

在硅负极材料实际应用面临巨大挑战的现状下, 氧化硅材料 (SiOx, 0 ≤ x ≤ 2) 由于其体积膨胀相对较小、循环性能稳定、成本较低, 有可能比硅负极更早实现商业应用, 受到研究人员的广泛关注。然而, 利用低成本的方法制备具有长期稳定循环性能和高库仑效率的SiOx材料仍然是一个挑战。本工作通过硅氧烷水解和酚醛树脂原位聚合, 以较低的成本制备了库仑效率高、长期循环稳定性好的SiOx负极材料。通过不同的硅烷偶联剂进一步调节硅氧烷的水解, 调控制备的SiOx材料的尺寸和微观结构, 从而显著提高了SiOx材料的电化学性能。硅烷偶联剂调控硅氧烷水解制备的SiOx具有优异的电化学性能, 归功于硅烷偶联剂对SiOx的尺寸和微观结构的影响, 揭示了一种利用硅烷偶联剂调控硅氧烷水解制备高性能SiOx材料的新方法。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li G, Huang LB, Yan MY, Li JY, Jiang KC, Yin YX, Xin S, Xu Q, Guo YG. An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy. 2020;1:74104890. https://doi.org/10.1016/j.nanoen.2020.104890.

    Article  CAS  Google Scholar 

  2. Wang F, Wang B, Ruan T, Gao T, Song R, Jin F, Zhou Y, Wang D, Liu H, Dou S. Construction of structure-tunable Si@void@C anode materials for lithium-ion batteries through controlling the growth kinetics of resin. ACS Nano. 2019;13(10):12219. https://doi.org/10.1021/acsnano.9b07241.

    Article  CAS  Google Scholar 

  3. Ke CZ, Liu F, Zheng ZM, Zhang HH, Cai MT, Li M, Yan QZ, Chen HX, Zhang QB. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 2021;40(6):1347. https://doi.org/10.1007/s12598-021-01716-1.

    Article  CAS  Google Scholar 

  4. He Y, Jiang L, Chen T, Xu Y, Jia H, Yi R, Xue D, Song M, Genc A, Bouchet-Marquis C, Pullan L, Tessner T, Yoo J, Li X, Zhang JG, Zhang S, Wang C. Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading. Nat Nanotechnol. 2021;16(10):1113. https://doi.org/10.1038/s41565-021-00947-8.

    Article  CAS  Google Scholar 

  5. Wang F, Wang B, Li J, Wang B, Zhou Y, Wang D, Liu H, Dou S. Prelithiation: a crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano. 2021;15(2):2197. https://doi.org/10.1021/acsnano.0c10664.

    Article  CAS  Google Scholar 

  6. Wang N, Liu YY, Shi ZX, Yu ZL, Duan HY, Fang S, Yang JY, Wang XM. Electrolytic silicon/graphite composite from SiO2/graphite porous electrode in molten salts as a negative electrode material for lithium-ion batteries. Rare Met. 2022;41(2):438. https://doi.org/10.1007/s12598-020-01702-z.

    Article  CAS  Google Scholar 

  7. Li Z, Wu G, Yang Y, Wan Z, Zeng X, Yan L, Wu S, Ling M, Liang C, Hui KN, Lin Z. An ion-conductive grafted polymeric binder with practical loading for silicon anode with high interfacial stability in lithium-ion batteries. Adv Energy Mater. 2022;12(29):2201197. https://doi.org/10.1002/aenm.202201197.

    Article  CAS  Google Scholar 

  8. Tan DHS, Chen YT, Yang H, Bao W, Sreenarayanan B, Doux JM, Li W, Lu B, Ham SY, Sayahpour B, Scharf J, Wu EA, Deysher G, Han HE, Hah HJ, Jeong H, Lee JB, Chen Z, Meng YS. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science. 2021;373(6562):1494. https://doi.org/10.1126/science.abg7217.

    Article  CAS  Google Scholar 

  9. Jin Y, Zhu B, Lu Z, Liu N, Zhu J. Challenges and recent progress in the development of si anodes for lithium-ion battery. Adv Energy Mater. 2017;7(23):1700715. https://doi.org/10.1002/aenm.201700715.

    Article  CAS  Google Scholar 

  10. Wang F, Wang B, Yu Z, Lv Q, Jin F, Bao C, Wang D. A simple and green self-conversion method to construct silicon hollow spheres for high-performance li-ion battery anodes. Electrochim Acta. 2023. https://doi.org/10.1016/j.electacta.2023.141950.

    Article  Google Scholar 

  11. Li H, Li H, Yang Z, Yang L, Gong J, Liu Y, Wang G, Zheng Z, Zhong B, Song Y, Zhong Y, Wu Z, Guo X. SiOx anode: from fundamental mechanism toward industrial application. Small. 2021;17(51):2102641. https://doi.org/10.1002/smll.202102641.

    Article  CAS  Google Scholar 

  12. Xu Q, Sun JK, Yu ZL, Yin YX, Xin S, Yu SH, Guo YG. SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode. Adv Mater. 2018;30(25):1707430. https://doi.org/10.1002/adma.201707430.

    Article  CAS  Google Scholar 

  13. Xu Q, Sun JK, Yin YX, Guo YG. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv Funct Mater. 2018;28(8):1705235. https://doi.org/10.1002/adfm.201705235.

    Article  CAS  Google Scholar 

  14. Im J, Kwon JD, Kim DH, Yoon S, Cho KY. P-doped SiOx/Si/SiOx sandwich anode for Li-ion batteries to achieve high initial coulombic efficiency and low capacity decay. Small Methods. 2022;6(3):2101052. https://doi.org/10.1002/smtd.202101052.

    Article  CAS  Google Scholar 

  15. Wu W, Shi J, Liang Y, Liu F, Peng Y, Yang H. A low-cost and advanced SiOx–C composite with hierarchical structure as an anode material for lithium-ion batteries. Phys Chem Chem Phys. 2015;17(20):13451. https://doi.org/10.1039/C5CP01212K.

    Article  CAS  Google Scholar 

  16. Jiao M, Wang Y, Ye C, Wang C, Zhang W, Liang C. High-capacity SiOx (0≤x≤2) as promising anode materials for next-generation lithium-ion batteries. J Alloy Compd. 2020. https://doi.org/10.1016/j.jallcom.2020.155774.

    Article  Google Scholar 

  17. Liu Z, Yu Q, Zhao Y, He R, Xu M, Feng S, Li S, Zhou L, Mai L. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem Soc Rev. 2019;48(1):285. https://doi.org/10.1039/C8CS00441B.

    Article  CAS  Google Scholar 

  18. Tao J, Yan Z, Yang J, Li J, Lin Y, Huang Z. Boosting the cell performance of the SiOx@C anode material via rational design of a Si-valence gradient. Carbon Energy. 2022;4(2):129. https://doi.org/10.1002/cey2.141.

    Article  CAS  Google Scholar 

  19. Fan S, Zhou X, Tang J, Ma Y, Yang J. Insights to the variation of oxygen content and reasons for improved electrochemical performance of annealing SiOx anodes for Li-ion battery. Appl Surface Sci. 2022. https://doi.org/10.1016/j.apsusc.2021.152179.

    Article  Google Scholar 

  20. Wu W, Wang M, Wang R, Xu D, Zeng H, Wang C, Cao Y, Deng Y. Magnesio-mechanochemical reduced SiOx for high-performance lithium ion batteries. J Power Sources. 2018. https://doi.org/10.1016/j.jpowsour.2018.10.065.

    Article  Google Scholar 

  21. Wang R, Li H, Wu Y, Li H, Zhong B, Sun Y, Wu Z, Guo X. How to promote the industrial application of SiOx anode prelithiation: capability, accuracy, stability, uniformity, cost, and safety. Adv Energy Mater. 2022;12(48):2202342. https://doi.org/10.1002/aenm.202202342.

    Article  CAS  Google Scholar 

  22. Tian H, Tian H, Yang W, Zhang F, Yang W, Zhang Q, Wang Y, Liu J, Silva SRP, Liu H, Wang G. Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries. Adv Funct Mater. 2021;31(25):2101796. https://doi.org/10.1002/adfm.202101796.

    Article  CAS  Google Scholar 

  23. Guo C, Xie Y, Pan K, Li L. MOF-derived hollow SiOx nanoparticles wrapped in 3D porous nitrogen-doped graphene aerogel and their superior performance as the anode for lithium-ion batteries. Nanoscale. 2020;12(24):13017. https://doi.org/10.1039/D0NR02453H.

    Article  CAS  Google Scholar 

  24. Chen K, Tan Y, Wang K, Niu J, Chen ZY. High specific capacity of carbon coating lemon-like SiO2 hollow spheres for lithium-ion batteries. Electrochim Acta. 2022. https://doi.org/10.1016/j.electacta.2021.139497.

    Article  Google Scholar 

  25. Sun X, Geng L, Yi S, Li C, An Y, Zhang X, Zhang X, Wang K, Ma Y. Effects of carbon black on the electrochemical performances of SiOx anode for lithium-ion capacitors. J Power Sources. 2021. https://doi.org/10.1016/j.jpowsour.2021.229936.

    Article  Google Scholar 

  26. Xiao Z, Yu C, Lin X, Chen X, Zhang C, Wei F. Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material. Carbon. 2019. https://doi.org/10.1016/j.carbon.2019.04.051.

    Article  Google Scholar 

  27. Jin C, Dan J, Zou Y, Xu G, Yue Z, Li X, Sun F, Zhou L, Wang L. Carbon-coated nitrogen doped SiOx anode material for high stability lithium ion batteries. Ceram Int. 2021;47(20):29443. https://doi.org/10.1016/j.ceramint.2021.07.112.

    Article  CAS  Google Scholar 

  28. Kim D, Kim KH, Lim C, Lee YS. Carbon-coated SiOx anode materials via PVD and pyrolyzed fuel oil to achieve lithium-ion batteries with high cycling stability. Carbon Lett. 2022;32(1):321. https://doi.org/10.1007/s42823-021-00314-6.

    Article  Google Scholar 

  29. Zhang K, Du W, Qian Z, Lin L, Gu X, Yang J, Qian Y. SiOx embedded in N-doped carbon nanoslices: a scalable synthesis of high-performance anode material for lithium-ion batteries. Carbon. 2021. https://doi.org/10.1016/j.carbon.2021.03.011.

    Article  Google Scholar 

  30. Bai X, Wang B, Wang H, Jiang J. In situ synthesis of carbon fiber-supported SiOx as anode materials for lithium ion batteries. RSC Adv. 2016;6(39):32798. https://doi.org/10.1039/C6RA03963D.

    Article  CAS  Google Scholar 

  31. Wang F, Wang B, Yu Z, Zhu C, Liu P, Li J, Wang B, Zhou Y, Wang D, Liu HK, Dou S. Construction of air-stable pre-lithiated SiOx anodes for next-generation high-energy-density lithium-ion batteries. Cell Rep Phys Sci. 2022;3(5):100872. https://doi.org/10.1016/j.xcrp.2022.100872.

    Article  CAS  Google Scholar 

  32. Zhou X, Liu Y, Ren Y, Mu T, Yin X, Du C, Huo H, Cheng X, Zuo P, Yin G. Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithium-ion batteries. Adv Funct Mater. 2021;31(21):2101145. https://doi.org/10.1002/adfm.202101145.

    Article  CAS  Google Scholar 

  33. He D, Li P, Wang W, Wan Q, Zhang J, Xi K, Ma X, Liu Z, Zhang L, Qu X. Collaborative design of hollow nanocubes, in situ cross-linked binder, and amorphous void@SiOx@C as a three-pronged strategy for ultrastable lithium storage. Small. 2020;16(5):1905736. https://doi.org/10.1002/smll.201905736.

    Article  CAS  Google Scholar 

  34. Wu F, He Z, Wang M, Huang Y, Wang F. Construction of three-dimensional carbon framework-loaded silicon nanoparticles anchored by carbon film for high-performance lithium-ion battery anode materials. Nano Res. 2022;15(7):6168. https://doi.org/10.1007/s12274-022-4264-z.

    Article  CAS  Google Scholar 

  35. Son Y, Kim N, Lee T, Lee Y, Ma J, Chae S, Sung J, Cha H, Yoo Y, Cho J. Calendering-compatible macroporous architecture for silicon-graphite composite toward high-energy lithium-ion batteries. Adv Mater. 2020;32(37):2003286. https://doi.org/10.1002/adma.202003286.

    Article  Google Scholar 

  36. Zhu G, Chao D, Xu W, Wu M, Zhang H. Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano. 2021;15(10):15567. https://doi.org/10.1021/acsnano.1c05898.

    Article  CAS  Google Scholar 

  37. Feng L, Ji Y, Zhu Z, Yu P, Fu X, Yang M, Wang Y, Yang W. Rational design and superfast production of biomimetic, calendering-compatible, catalytic, sulfur-rich secondary particles for advanced lithium-sulfur batteries. Energy Storage Mater. 2021. https://doi.org/10.1016/j.ensm.2021.05.038.

    Article  Google Scholar 

  38. Meyer C, Bockholt H, Haselrieder W, Kwade A. Characterization of the calendering process for compaction of electrodes for lithium-ion batteries. J Mater Process Technol. 2017. https://doi.org/10.1016/j.jmatprotec.2017.05.031.

    Article  Google Scholar 

  39. Günther T, Schreiner D, Metkar A, Meyer C, Kwade A, Reinhart G. Classification of calendering-induced electrode defects and their influence on subsequent processes of lithium-ion battery production. Energy Technol. 2020;8(2):1900026. https://doi.org/10.1002/ente.201900026.

    Article  CAS  Google Scholar 

  40. Yoon T, Bok T, Kim C, Na Y, Park S, Kim KS. Mesoporous silicon hollow nanocubes derived from metal-organic framework template for advanced lithium-ion battery anode. ACS Nano. 2017;11(5):4808. https://doi.org/10.1021/acsnano.7b01185.

    Article  CAS  Google Scholar 

  41. Zhu M, Shen Y, Chang L, Yin D, Cheng Y, Wang L. Enabling high electrochemical activity of a hollow SiO2 anode by decorating it with ultrafine cobalt nanoparticles and a carbon matrix for long-lifespan lithium ion batteries. Nanoscale. 2020;12(25):13442. https://doi.org/10.1039/D0NR02345K.

    Article  CAS  Google Scholar 

  42. Xu T, Wang Q, Zhang J, Xie X, Xia B. Green synthesis of dual carbon conductive network-encapsulated hollow SiOx spheres for superior lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(22):19959. https://doi.org/10.1021/acsami.9b03070.

    Article  CAS  Google Scholar 

  43. Zhu R, Hu X, Chen K, Dang J, Wang X, Liu X, Wang H. Double-shelled hollow carbon nanospheres as enclosed electrochemical reactors to enhance the lithium storage performance of silicon nanodots. J Mater Chem A. 2020;8(25):12502. https://doi.org/10.1039/D0TA04323K.

    Article  CAS  Google Scholar 

  44. Freytag AI, Pauric AD, Jiang M, Goward GR. 7Li and 29Si NMR enabled by high-density cellulose-based electrodes in the lithiation process in silicon and silicon monoxide anodes. J Phys Chem C. 2019;123(18):11362. https://doi.org/10.1021/acs.jpcc.8b11963.

    Article  CAS  Google Scholar 

  45. Zhang H, Liu K, Liu Y, Lang Z, He W, Ma L, Man J, Jia G, Cui J, Sun J. Observably improving initial coulombic efficiency of C/SiOx anode using -C-O-PO3Li2 groups in lithium ion batteries. J Power Sources. 2020. https://doi.org/10.1016/j.jpowsour.2019.227400.

    Article  Google Scholar 

  46. Xia R, Zhao K, Zheng J, Shen T, Zhang L, Huijben M, ten Elshof J. Decoupling reaction rate and diffusion limitation to fast-charging electrodes by extended modeling of cyclic voltammetry data. Energy Storage Mater. 2022. https://doi.org/10.1016/j.ensm.2022.09.016.

    Article  Google Scholar 

  47. Rui XH, Ding N, Liu J, Li C, Chen CH. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta. 2010;55(7):2384. https://doi.org/10.1016/j.electacta.2009.11.096.

    Article  CAS  Google Scholar 

  48. Ding N, Xu J, Yao YX, Wegner G, Fang X, Chen CH, Lieberwirth I. Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ionics. 2009;180(2–3):222. https://doi.org/10.1016/j.ssi.2008.12.015.

    Article  CAS  Google Scholar 

  49. Gao C, Zhou J, Liu G, Wang L. Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries. Appl Surf Sci. 2018. https://doi.org/10.1016/j.apsusc.2017.10.034.

    Article  Google Scholar 

  50. Tang K, Yu X, Sun J, Li H, Huang X. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta. 2011;56(13):4869. https://doi.org/10.1016/j.electacta.2011.02.119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 22204159), the Instrument Developing Project of the Chinese Academy of Sciences (No. YJKYYQ20210003) and Natural Science Foundation of Jilin Province (No. 20210101402JC)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Wang, Ming-Yan Chuai or Jia-Nan Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 14070 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Gao, H., Niu, ZY. et al. Engineering molecular regulation for SiOx with long-term stable cycle and high Coulombic efficiency as lithium-ion battery anodes. Rare Met. 43, 588–598 (2024). https://doi.org/10.1007/s12598-023-02463-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02463-1

Keywords

Navigation