Skip to main content
Log in

One-pot synthesis of Pd-Au-alloy-nanoparticle-decorated graphene oxide functionalized with dodecahydrododecaborate cluster for rapid and complete reduction of 4-nitrophenol at room temperature

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

鉴于硝基芳烃存在的高细胞毒性,如何处理废水中硝基芳烃是一个亟待解决的环境问题。去除 4-NP 的一种优良方法是将其催化还原为应用广泛的 4-AP。然而,在没有外部催化剂的情况下很难进行该反应。本研究以具有含氧表面基团的二维氧化石墨烯(GO)为基底,通过氢键作用与十二氢十二硼烷阴离子基团(closo-[B12H12]2‒)相互作用形成功能性硼团簇(BGO),并原位还原PdAu合金纳米颗粒(PdAu/BGO)。PdAu/BGO可以将4-NP等硝基芳烃快速加氢为氨基芳烃,加氢效率接近100%并且具有良好的循环稳定性。因此,所提出的制备方案和高的催化剂活性能够有效证明closo-[B12H12]2‒可用于还原金属和制备更细小、分散良好的纳米颗粒。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Tian X, Zahid M, Li J, Sun W, Niu X, Zhu Y. Pd/Mo2N-TiO2 as efficient catalysts for promoted selective hydrogenation of 4-nitrophenol: a green bio-reducing preparation method. J Catal. 2020;391:190. https://doi.org/10.1016/j.jcat.2020.08.027.

    Article  CAS  Google Scholar 

  2. Audevard J, Benyounes A, Castro CR, Abou OH, Kacimi M, Serp P. Multifunctional catalytic properties of Pd/CNT catalysts for 4-nitrophenol reduction. ChemCatChem. 2022;14:e202101783. https://doi.org/10.1002/cctc.202101783.

    Article  CAS  Google Scholar 

  3. Sun H, Zelekew OA, Chen X, Guo Y, Lu Q, Lin J. A noble bimetal oxysulfide CuVOS catalyst for highly efficient catalytic reduction of 4-nitrophenol and organic dyes. RSC Adv. 2019;9:31828. https://doi.org/10.1039/c9ra05172d.

    Article  CAS  Google Scholar 

  4. Du C, Bai Y, Shui Y, Zhao Y, Zheng X, Guo S, Wang Q, Yang T, Wang S, Dong W, Wang L. Carbon-based nanorod catalysts for nitrophenol reduction. ACS Appl Nano Mater. 2019;2(2):879. https://doi.org/10.1021/acsanm.8b02148.

    Article  CAS  Google Scholar 

  5. Aghaei M, Kianfar AH, Dinari M. Catalytic reduction of 4-nitrophenol by means of nanostructured polymeric Schiff base complexes. Appl Organomet Chem. 2020;34:e5637. https://doi.org/10.1002/aoc.5617.

    Article  CAS  Google Scholar 

  6. Liu L, Chen R, Liu W, Wu J, Gao D. Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide. J Hazard Mater. 2016;320:96. https://doi.org/10.1016/j.jhazmat.2016.08.019.

    Article  CAS  Google Scholar 

  7. Chiou JR, Lai BH, Hsu KC, Chen DH. One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J Hazard Mater. 2013;248–249:394. https://doi.org/10.1016/j.jhazmat.2013.01.030.

    Article  CAS  Google Scholar 

  8. Chen XD, Xie YK, Shao YX, Shen K, Li YW. Facile synthesis of boron and nitrogen dual-doped hollow mesoporous carbons for efficient reduction of 4-nitrophenol. ACS Appl Mater Interfaces. 2021;13(36):42598. https://doi.org/10.1021/acsami.1c08187.

    Article  CAS  Google Scholar 

  9. Nemanashi M, Meijboom R. Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. J Colloid Interface Sci. 2013;389(1):260. https://doi.org/10.1016/j.jcis.2012.09.012.

    Article  CAS  Google Scholar 

  10. Serrà A, Artal R, Pozo M, Garcia-Amorós J, Gómez E. Simple environmentally-friendly reduction of 4-nitrophenol. Catalysts. 2020;10(4):458. https://doi.org/10.3390/catal10040458.

    Article  CAS  Google Scholar 

  11. Xiang G, Hao Z, Yonggang L, Zhenpeng R, Cuiping L, Jianli T, Yunpu Z. Facile synthesis of PdNiP/reduced graphene oxide nanocomposites for catalytic reduction of 4-nitrophenol. Mater Chem Phys. 2019;222:391. https://doi.org/10.1016/j.matchemphys.2018.10.037.

    Article  CAS  Google Scholar 

  12. Wu T, Zhang L, Gao J, Liu Y, Gao C, Yan J. Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J Mater Chem. 2013;1(25):7384. https://doi.org/10.1039/c3ta10684e.

    Article  CAS  Google Scholar 

  13. Ezhil AT, V, Sang RC, Krishnan G, Jang SC, Changhyun R, Yun SH, Han YK. Pd nanospheres decorated reduced graphene oxide with multi-functions: highly efficient catalytic reduction and ultrasensitive sensing of hazardous 4-nitrophenol pollutant. J Hazard Mater. 2017;333:54. https://doi.org/10.1016/j.jhazmat.2017.03.015.

    Article  CAS  Google Scholar 

  14. Kang XY, Teng DY, Wu SL, Tian ZF, Li PF, Liang CH. Ultrafine copper nanoparticles anchored on reduced graphene oxide present excellent catalytic performance toward 4-nitrophenol reduction. J Colloid Interf Sci. 2020;566:265. https://doi.org/10.1016/j.jcis.2020.01.097.

    Article  CAS  Google Scholar 

  15. Sun HZ, Osman AZ, Chen XY, Guo YB, Lin JG. A noble bimetal oxysulfide CuVOS catalyst for highly efficient catalytic reduction of 4-nitrophenol and organic dyes. RSC Adv. 2019;9:31828. https://doi.org/10.1039/c9ra05172d.

    Article  CAS  Google Scholar 

  16. Zhuang Z, Yang Q, Chen W. One-step rapid and facile synthesis of subnanometer-sized Pd6(C12H25S)11 clusters with ultra-high catalytic activity for 4-nitrophenol reduction. ACS Sustain Chem Eng. 2019;7(3):2916. https://doi.org/10.1021/acssuschemeng.8b06637.

    Article  CAS  Google Scholar 

  17. Krishnamoorthy S, Tatiana MB, Cecilia CT, Cristian HC. Gold nanoparticles supported on mesostructured oxides for the enhanced catalytic reduction of 4-nitrophenol in water. Catal Today. 2020;388:383. https://doi.org/10.1016/j.cattod.2020.05.051.

    Article  CAS  Google Scholar 

  18. Wu T, Zhang L, Gao J, Liu Y, Gao C, Yan J. Fabrication of graphene oxide decorated with Au-Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J Mater Chem A. 2013;1:7384. https://doi.org/10.1039/C3TA10684E.

    Article  CAS  Google Scholar 

  19. Cheng H, Hempenius MA, Sui X, Vancso GJ. Catalytic performance of Pd nanoparticles obtained by direct reduction in cellulose–poly(ferrocenylsilane) hybrid sponges. Adv Mater Interfaces. 2022;9(6):2101664. https://doi.org/10.1002/admi.202101664.

    Article  CAS  Google Scholar 

  20. Zhang T, Ouyang B, Zhang X, Xia G, Wang N, Ou H, Ma L, Mao P, Ostrikov K, Di L, Tu X. Plasma-enabled synthesis of Pd/GO rich in oxygen-containing groups and defects for highly efficient 4-nitrophenol reduction. Appl Surf Sci. 2022;597:153727. https://doi.org/10.1016/j.apsusc.2022.153727.

    Article  CAS  Google Scholar 

  21. Chen C, Chen T, Chiu K, Wu H, Pao C, Chen C, Hsu H, Kao H. Silver particles deposited onto magnetic carbon nanofibers as highly active catalysts for 4-nitrophenol reduction. Appl Catal B-Environ. 2022;315:121596. https://doi.org/10.1016/j.apcatb.2022.121596.

    Article  CAS  Google Scholar 

  22. Xiao W, Xiao L, Xiao W, Wang Q, Zhai S, Sun R. The new identity of cellulose pulp: a green silver nanoparticles support for highly efficient catalytic hydrogenation of 4-nitrophenol. J CleanProd. 2022;355:131833. https://doi.org/10.1016/j.jclepro.2022.131833.

    Article  CAS  Google Scholar 

  23. Zhao X, Yang Z, Chen H, Wang Z, Zhou X, Zhang H. Progress in three-dimensional aromatic-like closo-dodecaborate. Coord Chem Rev. 2021;444:214042. https://doi.org/10.1016/j.ccr.2021.214042.

    Article  CAS  Google Scholar 

  24. Yang J, Yu F, Chen A, Zhao S, Zhou Y, Zhang S, Sun T, Hu G. Synthesis and application of silver and copper nanowires in high transparent solar cells. Adv Powder Mater. 2022;1(4):100045. https://doi.org/10.1016/j.apmate.2022.100045.

    Article  Google Scholar 

  25. Zhang C, Zhang R, He S, Li L, Wang X, Liu M, Chen W. 4-nitrophenol reduction by a single platinum palladium nanocube caged within a nitrogen-doped hollow carbon nanosphere. ChemCatChem. 2017;9:980. https://doi.org/10.1002/cctc.201601364.

    Article  CAS  Google Scholar 

  26. Du C, He S, Gao X, Chen W. Hierarchical Cu@MnO2 core–shell nanowires: a nonprecious-metal catalyst with an excellent catalytic activity toward the reduction of 4-nitrophenol. ChemCatChem. 2016;8:2885. https://doi.org/10.1002/cctc.201600567.

    Article  CAS  Google Scholar 

  27. Zhao X, Chen H, Li H, Hu B, Kuklin AV, Baryshnikov GV, Ågren H, Hu W, Hu G, Zhou X, Zhang H. Persistent radical pairs trigger nano-gold to highly efficiently and highly selectively drive the value-added conversion of nitroaromatics. Chem Catalysis. 2021;1(5):1118. https://doi.org/10.1016/j.checat.2021.08.017.

    Article  CAS  Google Scholar 

  28. Xu K, Wu J, Fang Q, Bai L, Duan J, Li J, Xu H, Hui A, Hao L, Xuan S. Magnetically separable h-Fe3O4@Au/polydopamine nanosphere with a hollow interior: a versatile candidate for nanocatalysis and metal ion adsorption. Chem Eng J. 2020;398:125571. https://doi.org/10.1016/j.cej.2020.125571.

    Article  CAS  Google Scholar 

  29. Chen S, Xu ZP, Zhang Q, Lu GQM, Hao ZP, Liu S. Studies on adsorption of phenol and 4-nitrophenol on MgAl-mixed oxide derived from MgAl-layered double hydroxide. Sep Purif Technol. 2009;67(2):194. https://doi.org/10.1016/j.seppur.2009.03.016.

    Article  CAS  Google Scholar 

  30. Salimi M, Salehi Z, Heidari H, Vahabzadeh F. Production of activated biochar from Luffa cylindrica and its application for adsorption of 4-nitrophenol. J Environ Chem Eng. 2021;9(4):105403. https://doi.org/10.1016/j.jece.2021.105403.

    Article  CAS  Google Scholar 

  31. Houcini H, Laghrib F, Ettadili FE, Farahi A, Bakasse M, Lahrich S, El Mhammedi MA. Enhanced catalytic activity of a zero-valent silver (ZVAg) sensor for reduction of hazardous 4-nitrophenol in aqueous medium. Int J Environ Anal Chem. 2019;101:1907. https://doi.org/10.1080/03067319.2019.1691181.

    Article  CAS  Google Scholar 

  32. Wu T, Zhang L, Gao J, Liu Y, Gao C, Yan J. Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J Mater Chem A. 2013;1:7384. https://doi.org/10.1039/c3ta10684e.

    Article  CAS  Google Scholar 

  33. Zhao X, Xiang C, Zhang F, Yao F, Sheng R, Ding Q, Liu W, Zhang H, Zhou X. Transformation from 3D boron organic polymers to 1D nanorod arrays: loading highly dispersed nanometal for green catalysis. ACS Appl Mater Inter. 2019;11(46):43214. https://doi.org/10.1021/acsami.9b15395.

    Article  CAS  Google Scholar 

  34. Evangelista V, Acosta B, Miridonov S, Smolentseva E, Fuentes S, Simakov A. Highly active Au-CeO2@ZrO2 yolk–shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Appl Catal B-Environ. 2015;166–167:518. https://doi.org/10.1016/j.apcatb.2014.12.006.

    Article  CAS  Google Scholar 

  35. Strankowski M, Włodarczyk D, Piszczyk Ł, Strankowska J. Polyurethane nanocomposites containing reduced graphene oxide. FTIR Raman and XRD Stud J Spectrosc. 2016;2016:1. https://doi.org/10.1155/2016/7520741.

    Article  CAS  Google Scholar 

  36. Lv J, Wu S, Tian Z, Ye Y, Liu J, Liang C. Construction of PdO–Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction. J Mater Chem A. 2019;7:12627. https://doi.org/10.1039/c9ta02045d.

    Article  CAS  Google Scholar 

  37. Maddinedi SB, Mandal BK, Fazlur-Rahman NK. High reduction of 4-nitrophenol using reduced graphene oxide/Ag synthesized with tyrosine. Environ Chem Lett. 2017;15:467. https://doi.org/10.1007/s10311-017-0610-x.

    Article  CAS  Google Scholar 

  38. Liu Z, Xu Z, Xu L, Buyong F, Chay TC, Li Z, Cai Y, Hu B, Zhu Y, Wang X. Modified biochar: synthesis and mechanism for removal of environmental heavy metals. Carbon Res. 2022;1:8. https://doi.org/10.1007/s44246-022-00007-3.

    Article  Google Scholar 

  39. Liu D, Zhou W, Wu J, Huang T. Fractal characterization of graphene oxide nanosheet. Mater Lett. 2018;220:40. https://doi.org/10.1016/j.matlet.2018.02.134.

    Article  CAS  Google Scholar 

  40. Shi S, Jia C, Huo X, Zhang S, Xu Q, Zhu X. Thermal stabilization effect and oxygen replacement reaction together regulate N/S co-doped microporous carbon synthesis. Carbon Res. 2022;1:7. https://doi.org/10.1007/s44246-022-00006-4.

    Article  Google Scholar 

  41. Nimita Jebaranjitham J, Mageshwari C, Saravanan R, Mu N. Fabrication of amine functionalized graphene oxide–AgNPs nanocomposite with improved dispersibility for reduction of 4-nitrophenol. Compos Part B-Eng. 2019;171:302. https://doi.org/10.1016/j.compositesb.2019.05.018.

    Article  CAS  Google Scholar 

  42. Pham TA, Choi BC, Lim KT, Jeong YT. A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding. Appl Surf Sci. 2011;257(8):3350. https://doi.org/10.1016/j.apsusc.2010.11.023.

    Article  CAS  Google Scholar 

  43. Xu Q, Xu H, Chen J, Lv Y, Dong C, Sreeprasad TS. Graphene and graphene oxide: advanced membranes for gas separation and water purification. Inorg Chem Front. 2015;2:417. https://doi.org/10.1039/c4qi00230j.

    Article  CAS  Google Scholar 

  44. Chatterjee S, Chakraborty M, Bera KK, Mahajan A, Banik S, Roy PS, Bhattacharya SK. Catalytic reduction of 4-nitrophenol to 4-aminophenol using an efficient Pd nanoparticles. IOP Conf Ser: Mater Sci Eng. 2021;1080:012010. https://doi.org/10.1088/1757-899X/1080/1/012010.

    Article  CAS  Google Scholar 

  45. Revathy TA, Sivaranjani T, Boopathi AA, Sampath S, Narayanan V, Stephen A. Pd–Co alloy as an efficient recyclable catalyst for the reduction of hazardous 4-nitrophenol. Res Chem Intermediat. 2018;45:815. https://doi.org/10.1007/s11164-018-3645-0.

    Article  CAS  Google Scholar 

  46. Gao X, Zhao H, Liu Y, Ren Z, Lin C, Tao J, Zhai Y. Facile synthesis of PdNiP/reduced graphene oxide nanocomposites for catalytic reduction of 4-nitrophenol. Mater Chem Phys. 2019;222:391. https://doi.org/10.1016/j.matchemphys.2018.10.037.

    Article  CAS  Google Scholar 

  47. Zhao X, Li X, Bi Z, Wang Y, Zhang H, Zhou X, Wang Q, Zhou Y, Wang H, Hu G. Boron modulating electronic structure of FeN4C to initiate high-efficiency oxygen reduction reaction and high-performance zinc-air battery. J Energy Chem. 2022;66:514. https://doi.org/10.1016/j.jechem.2021.08.067.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U2002213), the Double Tops Joint Fund of Yunnan Science and Technology Bureau and Yunnan University (No. 2019FY003025), and Double First-Class University Plan (No. C176220100042). Thomas Wågberg acknowledges the support from Vetenskapsradet (Nos. 2017-04862 and 2021-04629).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Xing Zhou or Guang-Zhi Hu.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YB., Wang, YW., Zhang, DF. et al. One-pot synthesis of Pd-Au-alloy-nanoparticle-decorated graphene oxide functionalized with dodecahydrododecaborate cluster for rapid and complete reduction of 4-nitrophenol at room temperature. Rare Met. 42, 3622–3629 (2023). https://doi.org/10.1007/s12598-023-02453-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02453-3

Navigation