Skip to main content
Log in

Progress in research on metal-based materials in stabilized Zn anodes

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Aqueous zinc-ion batteries (ZIBs) combine the benefits of metallic Zn anodes with those of aqueous electrolytes and are well suited for large-scale energy storage because of their inherent high safety, cost-effectiveness, and eco-friendliness. Currently, the practical application of such batteries is hindered by the poor cycling performance of Zn anodes due to uncontrolled dendrite formation and severe side reactions, although recent reports suggest that these problems can be mitigated through the modification of Zn anodes with metal-based materials. Given that the mechanisms of improving Zn deposition and the structural evolution of metal-based materials have not been systematically reviewed, we herein systematically overview the metal-based materials used to stabilize Zn anodes, starting with a brief summary of the anode working mechanism and the challenges faced by stabilized Zn anodes. Subsequently, the design principles of Zn anodes stabilized by metal-based materials and the related recent progress are reviewed, and the key challenges and perspectives for the future development of such Zn anodes are proposed.

Graphical abstract

摘要

水系锌离子电池(ZIBs)结合了金属锌阳极和水电解质的优点,由于其固有的高安全性、成本效益和生态友好性,非常适合大规模储能。目前,由于不受控制的枝晶形成和严重的副反应,锌阳极的循环性能较差,阻碍了这种电池的实际应用,尽管最近的报道表明,这些问题可以通过金属基材料改性锌阳极来缓解。鉴于金属基材料改善Zn沉积的机理和结构演化尚未得到系统综述,本文首先对金属基材料稳定Zn阳极的工作机理和稳定Zn阳极面临的挑战进行了简要概述,系统地综述了金属基材料用于稳定Zn阳极的研究。随后,综述了金属基材料稳定锌阳极的设计原理及相关研究进展,并提出了金属基材料稳定锌阳极未来发展的主要挑战和展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Obama B. The irreversible momentum of clean energy. Science. 2017;355:126. https://doi.org/10.1126/science.aam6284.

    Article  CAS  Google Scholar 

  2. Carley S, Konisky DM. The justice and equity implications of the clean energy transition. Nat Energy. 2020;5:569. https://doi.org/10.1038/s41560-020-0641-6.

    Article  CAS  Google Scholar 

  3. Jiang JM, Li ZW, Zhang ZT, Wang SJ, Xu H, Zheng XR, Chen YX, Ju ZC, Dou H, Zhang XG. Recent advances and perspectives on prelithiation strategies for lithium-ion capacitors. Rare Met. 2022;41(10):3322. https://doi.org/10.1007/s12598-022-02050-w.

    Article  CAS  Google Scholar 

  4. Zhang D, Li L, Zhang W, Cao M, Qiu H, Ji X. Research progress on electrolytes for fast-charging lithium-ion batteries. Chin Chem Lett. 2022;34:107122. https://doi.org/10.1016/j.cclet.2022.01.015.

    Article  CAS  Google Scholar 

  5. Zhang D, Tan C, Ou T, Zhang S, Li L, Ji X. Constructing advanced electrode materials for low-temperature lithium-ion batteries: a review. Energy Rep. 2022;8:4525. https://doi.org/10.1016/j.egyr.2022.03.130.

    Article  Google Scholar 

  6. Li L, Zhang D, Deng J, Gou Y, Fang J, Cui H, Zhao Y, Cao M. Carbon-based materials for fast charging lithium-ion batteries. Carbon. 2021;183:721. https://doi.org/10.1016/j.carbon.2021.07.053.

    Article  CAS  Google Scholar 

  7. Li L, Zhang W, Pan W, Wang M, Zhang H, Zhang D, Zhang D. Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ion. Nanoscale. 2021;13:19291. https://doi.org/10.1039/D1NR05873H.

    Article  CAS  Google Scholar 

  8. Cao J, Zhang D, Zhang X, Zeng Z, Qin J, Huang Y. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ Sci. 2022;15:499. https://doi.org/10.1039/D1EE03377H.

    Article  CAS  Google Scholar 

  9. Abdulla J, Cao J, Zhang D, Zhang X, Sriprachuabwong C, Kheawhom S, Wangyao P, Qin J. Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries. ACS Appl Energy Mater. 2021;4:4602. https://doi.org/10.1021/acsaem.1c00224.

    Article  CAS  Google Scholar 

  10. Higashi S, Lee SW, Lee JS, Takechi K, Cui Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat Commun. 2016;7:1. https://doi.org/10.1038/ncomms11801.

    Article  Google Scholar 

  11. Ma L, Chen S, Li N, Liu Z, Tang Z, Zapien JA, Chen S, Fan J, Zhi C. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv Mater. 2020;32:1908121. https://doi.org/10.1002/adma.201908121.

    Article  CAS  Google Scholar 

  12. Zhou M, Guo S, Fang G, Sun H, Cao X, Zhou J, Pan A, Liang S. Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J Energy Chem. 2021;55:549. https://doi.org/10.1016/j.jechem.2020.07.021.

    Article  CAS  Google Scholar 

  13. Jabbari V, Foroozan T, Shahbazian-Yassar R. Dendritic Zn deposition in zinc-metal batteries and mitigation strategies. Adv Energy Sustain Res. 2021;2:2000082. https://doi.org/10.1002/aesr.202000082.

    Article  CAS  Google Scholar 

  14. Abdulla J, Cao J, Wangyao P, Qin J. Review on the suppression of Zn dendrite for high performance of Zn ion battery. J Met Mater Miner. 2020;30:1. https://doi.org/10.55713/jmmm.v30i3.900.

    Article  CAS  Google Scholar 

  15. Zhang Q, Mei L, Cao X, Tang Y, Zeng Z. Intercalation and exfoliation chemistries of transition metal dichalcogenides. J Mater Chem A. 2020;8:15417. https://doi.org/10.1039/D0TA03727C.

    Article  CAS  Google Scholar 

  16. Yi Z, Chen G, Hou F, Wang L, Liang J. Strategies for the stabilization of zn metal anodes for Zn-ion batteries. Adv Energy Mater. 2021;11:2003065. https://doi.org/10.1002/aenm.202003065.

    Article  CAS  Google Scholar 

  17. Zhang W, Zhuang HL, Fan L, Gao L, Lu Y. A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries. Sci Adv. 2018;4:eaar4410. https://doi.org/10.1126/sciadv.aar4410.

    Article  CAS  Google Scholar 

  18. Wang SB, Ran Q, Yao RQ, Shi H, Wen Z, Zhao M, Lang XY, Jiang Q. Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat Commun. 2020;11:1. https://doi.org/10.1038/s41467-020-15478-4.

    Article  CAS  Google Scholar 

  19. Yang Q, Liang G, Guo Y, Liu Z, Yan B, Wang D, Huang Z, Li X, Fan J, Zhi C. Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv Mater. 2019;31:1903778. https://doi.org/10.1002/adma.201903778.

    Article  CAS  Google Scholar 

  20. Ma L, Schroeder MA, Borodin O, Pollard TP, Ding MS, Wang C, Xu K. Realizing high zinc reversibility in rechargeable batteries. Nat Energy. 2020;5:743. https://doi.org/10.1038/s41560-020-0674-x.

    Article  CAS  Google Scholar 

  21. Guo N, Huo W, Dong X, Sun Z, Lu Y, Wu X, Dai L, Wang L, Lin H, Liu H, Liang H, He Z, Zhang Q. A review on 3D zinc anodes for zinc ion batteries. Small Methods. 2022;6:2200597. https://doi.org/10.1002/smtd.202200597.

    Article  CAS  Google Scholar 

  22. Kao-ian W, Mohamad AA, Liu WR, Pornprasertsuk R, Siwamogsatham S, Kheawhom S. Stability enhancement of zinc-ion batteries using non-aqueous electrolytes. Batter Supercaps. 2022;5:e202100361. https://doi.org/10.1002/batt.202100361.

    Article  CAS  Google Scholar 

  23. Zhang X, Hu JP, Fu N, Zhou WB, Liu B, Deng Q, Wu XW. Comprehensive review on zinc-ion battery anode: challenges and strategies. InfoMat. 2022;4:e12306. https://doi.org/10.1002/inf2.12306.

    Article  CAS  Google Scholar 

  24. Khezri R, Motlagh SR, Etesami M, Mohamad AA, Mahlendorf F, Somwangthanaroj A, Kheawhom S. Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries. Chem Eng J. 2022;449:137796. https://doi.org/10.1016/j.cej.2022.137796.

    Article  CAS  Google Scholar 

  25. Gan H, Wu J, Li R, Huang B, Liu H. Ultra-stable and deeply rechargeable zinc metal anode enabled by a multifunctional protective layer. Energy Storage Mater. 2022;47:602. https://doi.org/10.1016/j.cej.2022.137796.

    Article  CAS  Google Scholar 

  26. Chen X, Li W, Hu S, Akhmedov NG, Reed D, Li X, Liu X. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy. 2022;98:107269. https://doi.org/10.1016/j.nanoen.2022.107269.

    Article  CAS  Google Scholar 

  27. Song Y, Ruan P, Mao C, Chang Y, Wang L, Dai L, Zhou P, Lu B, Zhou J, He Z. Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 2022;14:218. https://doi.org/10.1007/s40820-022-00960-z.

    Article  CAS  Google Scholar 

  28. Zheng J, Zhao Q, Tang T, Yin J, Quilty CD, Renderos GD, Liu X, Deng Y, Wang L, Bock DC. Reversible epitaxial electrodeposition of metals in battery anodes. Science. 2019;366:645. https://doi.org/10.1126/science.aax6873.

    Article  CAS  Google Scholar 

  29. Cao J, Zhang D, Gu C, Wang X, Wang S, Zhang X, Qin J, Wu ZS. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv Energy Mater. 2021;11:2101299. https://doi.org/10.1002/aenm.202101299.

    Article  CAS  Google Scholar 

  30. Xing Z, Sun Y, Xie X, Tang Y, Xu G, Han J, Lu B, Liang S, Chen G, Zhou J. Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew Chem Int Ed. 2023;62:e202215324. https://doi.org/10.1002/anie.202215324.

    Article  CAS  Google Scholar 

  31. Zhao H, Lei D, He YB, Yuan Y, Yun Q, Ni B, Lv W, Li B, Yang QH, Kang F. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv Energy Mater. 2018;8:1800266. https://doi.org/10.1002/aenm.201800266.

    Article  CAS  Google Scholar 

  32. Shi X, Xu G, Liang S, Li C, Guo S, Xie X, Ma X, Zhou J. Homogeneous deposition of zinc on three-dimensional porous copper foam as a superior zinc metal anode. ACS Sustain Chem Eng. 2019;7:17737. https://doi.org/10.1021/acssuschemeng.9b04085.

    Article  CAS  Google Scholar 

  33. Li C, Xie X, Liu H, Wang P, Deng C, Lu B, Zhou J, Liang S. Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl Sci Rev. 2022;9:nwab177. https://doi.org/10.1021/10.1093/nsr/nwab177.

    Article  CAS  Google Scholar 

  34. Guo W, Cong Z, Guo Z, Chang C, Liang X, Liu Y, Hu W, Pu X. Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Mater. 2020;30:104. https://doi.org/10.1016/j.ensm.2020.04.038.

    Article  Google Scholar 

  35. Jian Q, Guo Z, Zhang L, Wu M, Zhao T. A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chem Eng J. 2021;425:130643. https://doi.org/10.1016/j.cej.2021.130643.

    Article  CAS  Google Scholar 

  36. Han MM, Huang JW, Wu XW, Liang SQ, Zhou J. Electrolyte modulation strategies for rechargeable Zn batteries. Chin J Inorg Chem. 2022;38:1451. https://doi.org/10.11862/CJIC.2022.130.

    Article  CAS  Google Scholar 

  37. Cao J, Zhang D, Zhang X, Sawangphruk M, Qin J, Liu R. A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J Mater Chem A. 2020;8:9331. https://doi.org/10.1039/D0TA02486D.

    Article  CAS  Google Scholar 

  38. Cao J, Zhang D, Gu C, Zhang X, Okhawilai M, Wang S, Han J, Qin J, Huang Y. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy. 2021;89:106322. https://doi.org/10.1016/j.nanoen.2021.106322.

    Article  CAS  Google Scholar 

  39. Lv Z, Wang B, Ye M, Zhang Y, Yang Y, Li CC. Activating the stepwise intercalation−conversion reaction of layered copper sulfide toward extremely high capacity zinc-metal-free anodes for rocking-chair zinc-ion batteries. ACS Appl Mater Interfaces. 2022;14:1126. https://doi.org/10.1021/acsami.1c21168.

    Article  CAS  Google Scholar 

  40. Cao J, Zhang D, Yue Y, Wang X, Srikhaow A, Sriprachuabwong C, Tuantranont A, Zhang X, Wu ZS, Qin J. Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries. Chem Eng J. 2021;426:131893. https://doi.org/10.1016/j.cej.2021.131893.

    Article  CAS  Google Scholar 

  41. Zhou J, Zhang L, Peng M, Zhou X, Cao Y, Liu J, Shen X, Yan C, Qian T. Diminishing interfacial turbulence by colloid-polymer electrolyte to stabilize zinc ion flux for deep-cycling Zn metal batteries. Adv Mater. 2022;34:2200131. https://doi.org/10.1002/adma.202200131.

    Article  CAS  Google Scholar 

  42. Lin P, Cong J, Li J, Zhang M, Lai P, Zeng J, Yang Y, Zhao J. Achieving ultra-long lifespan Zn metal anodes by manipulating desolvation effect and Zn deposition orientation in a multiple cross-linked hydrogel electrolyte. Energy Storage Mater. 2022;49:172. https://doi.org/10.1016/j.ensm.2022.04.010.

    Article  Google Scholar 

  43. Zhao Q, Wang Y, Liu W, Liu X, Wang H, Yu H, Chen Y, Chen L. An in-depth study of regulable zincophilic alloy matrix toward stable zinc metal batteries. Adv Mater Interfaces. 2022;9:2102254. https://doi.org/10.1002/admi.202102254.

    Article  CAS  Google Scholar 

  44. Liang G, Zhu J, Yan B, Li Q, Chen A, Chen Z, Wang X, Xiong B, Fan J, Jin X, Zhi C. Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ Sci. 2022;15:1086. https://doi.org/10.1039/D1EE03749H.

    Article  CAS  Google Scholar 

  45. Kang LT, Cui MW, Jiang FY, Gao YF, Luo HJ, Liu JJ, Liang W, Zhi CY. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv Energy Mater. 2018;8:1801090. https://doi.org/10.1002/aenm.201801090.

    Article  CAS  Google Scholar 

  46. Zou Y, Yang X, Shen L, Su Y, Chen Z, Gao X, Zhou J, Sun J. Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ Sci. 2022;15:5017. https://doi.org/10.1039/D2EE02416K.

    Article  CAS  Google Scholar 

  47. Hao JN, Li XL, Zhang SL, Yang FH, Zeng XH, Zhang S, Bo GY, Wang CS, Guo ZP. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv Funct Mater. 2020;30:2001263. https://doi.org/10.1002/adfm.202001263.

    Article  CAS  Google Scholar 

  48. Peng H, Fang Y, Wang J, Ruan P, Tang Y, Lu B, Cao X, Liang S, Zhou J. Constructing fast-ion-conductive disordered interphase for high-performance zinc-ion and zinc-iodine batteries. Matter. 2022;5:4363. https://doi.org/10.1016/j.matt.2022.08.025.

    Article  CAS  Google Scholar 

  49. Ruan P, Liang S, Lu B, Fan HJ, Zhou J. Design strategies for high-energy density aqueous zinc batteries. Angew Chem Int Ed. 2022;61:e202200598. https://doi.org/10.1002/anie.202200598.

    Article  CAS  Google Scholar 

  50. Wang T, Wang P, Pan L, He Z, Dai L, Wang L, Liu S, Jun SC, Lu B, Liang S, Zhou J. Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv Energy Mater. 2023;13:2203523. https://doi.org/10.1002/aenm.202203523.

    Article  CAS  Google Scholar 

  51. Xie X, Li J, Xing Z, Lu B, Liang S, Zhou J. Biocompatible zinc battery with programmable electro-crosslinked electrolyte. Natl Sci Rev. 2022. https://doi.org/10.1093/nsr/nwac281.

    Article  Google Scholar 

  52. Cui YH, Zhao QH, Wu XJ, Chen X, Yang JL, Wang YT, Qin RZ, Ding SX, Song YL, Wu JW, Yang K, Wang ZJ, Mei ZW, Song ZB, Wu H, Jiang ZY, Qian GY, Yang LY, Pan F. An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew Chem Int Ed. 2020;59:16594. https://doi.org/10.1002/anie.202005472.

    Article  CAS  Google Scholar 

  53. Cai Z, Ou Y, Zhang B, Wang J, Fu L, Wan M, Li G, Wang W, Wang L, Jiang J, Seh ZW, Hu E, Yang XQ, Cui Y, Sun Y. A replacement reaction enable dinterdigitated metal/solid electrolyte architecture for battery cycling at 20 mA cm−2 and 20 mAh cm−2. J Am Chem Soc. 2021;143:3143. https://doi.org/10.1021/jacs.0c11753.

    Article  CAS  Google Scholar 

  54. Yang Q, Li L, Hussain T, Wang DH, Hui L, Guo Y, Liang GJ, Li XL, Chen Z, Huang ZD, Li YJ, Xue YR, Zuo ZC, Qiu JS, Li YL, Zhi CY. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angew Chem Int Ed. 2022;61:e202112304. https://doi.org/10.1002/anie.202112304.

    Article  CAS  Google Scholar 

  55. Hao JN, Li B, Li XL, Zeng XH, Zhang SL, Yang FH, Liu SL, Li D, Wu C, Guo ZP. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv Mater. 2020;32:2003021. https://doi.org/10.1002/adma.202003021.

    Article  CAS  Google Scholar 

  56. Yang XZ, Li C, Sun ZT, Yang S, Shi ZX, Huang R, Liu BZ, Li S, Wu YH, Wang ML, Su YW, Dou SX, Sun JY. Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv Mater. 2021;33:2105951. https://doi.org/10.1002/adma.202105951.

    Article  CAS  Google Scholar 

  57. Um JH, Yu SH. Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques. Adv Energy Mater. 2021;11:2003004. https://doi.org/10.1002/aenm.202003004.

    Article  CAS  Google Scholar 

  58. Kang Z, Wu C, Dong L, Liu W, Mou J, Zhang J, Chang Z, Jiang B, Wang G, Kang F, Xu C. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain Chem Eng. 2019;7:3364. https://doi.org/10.1021/acssuschemeng.8b05568.

    Article  CAS  Google Scholar 

  59. Chen X, Li M, Chen Y, Wu B, Li Q, Lin M, An Q, Mai L. Realizing highly reversible zinc anode via controlled-current pre-deposition. Energy Environ Mater. 2022. https://doi.org/10.1002/eem2.12480.

    Article  Google Scholar 

  60. Xie C, Yang Z, Zhang Q, Ji H, Li Y, Wu T, Li W, Wu P, Wang H. Designing zinc deposition substrate with fully preferred orientation to elude the interfacial inhomogeneous dendrite growth. Research. 2022. https://doi.org/10.34133/2022/9841343.

    Article  Google Scholar 

  61. Xue R, Kong J, Wu Y, Wang Y, Kong X, Gong M, Zhang L, Lin X, Wang D. Highly reversible zinc metal anodes enabled by three-dimensional silver host for aqueous batteries. J Mater Chem A. 2022;10:10043. https://doi.org/10.1039/D2TA00326K.

    Article  CAS  Google Scholar 

  62. Ling W, Yang Q, Mo F, Lei H, Wang J, Jiao Y, Qiu Y, Chen T, Huang Y. An ultrahigh rate dendrite-free Zn metal deposition/striping enabled by silver nanowire aerogel with optimal atomic affinity with Zn. Energy Storage Mater. 2022;51:453. https://doi.org/10.1016/j.ensm.2022.07.002.

    Article  Google Scholar 

  63. Cui M, Xiao Y, Kang L, Du W, Gao Y, Sun X, Zhou Y, Li X, Li H, Jiang F, Zhi C. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl Energy Mater. 2019;2:6490. https://doi.org/10.1021/acsaem.9b01063.

    Article  CAS  Google Scholar 

  64. Tribbia M, Glenneberg J, Zampardi G, Mantia FL. Highly efficient, dendrite-free zinc electrodeposition in mild aqueous zinc-ion batteries through indium-based substrates. Batter Supercaps. 2022;5:e202100381. https://doi.org/10.1002/batt.202100381.

    Article  CAS  Google Scholar 

  65. Huang Y, Chang Z, Liu W, Huang W, Dong L, Kang F, Xu C. Layer-by-layer zinc metal anodes to achieve long-life zinc-ion batteries. Chem Eng J. 2022;431:133902. https://doi.org/10.1016/j.cej.2021.133902.

    Article  CAS  Google Scholar 

  66. Li H, Jia W, Chen P, Wang L, Yan X, Yang YY. Zinc deposition characteristics on different substrates for aqueous zinc ion battery. Appl Surf Sci. 2023;607:155111. https://doi.org/10.1016/j.apsusc.2022.155111.

    Article  CAS  Google Scholar 

  67. Qian Y, Meng C, He J, Dong X. A lightweight 3D Zn@Cu nanosheets@activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries. J Power Sources. 2020;480:228871. https://doi.org/10.1016/j.jpowsour.2020.228871.

    Article  CAS  Google Scholar 

  68. Chen T, Wang Y, Yang Y, Huang F, Zhu M, Ang BTW, Xue JM. Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv Funct Mater. 2021;31:2101607. https://doi.org/10.1002/adfm.202101607.

    Article  CAS  Google Scholar 

  69. Singh SB, Tran DT, Jeong KU, Kim NH, Lee JH. A flexible and transparent zinc-nanofiber network electrode for wearable electrochromic, rechargeable Zn-ion bAttery. Small. 2021;18:2104462. https://doi.org/10.1002/smll.202104462.

    Article  CAS  Google Scholar 

  70. Chen T, Shuang Z, Hu J, Zhao Y, Wei D, Ye J, Zhang G, Duan H. Freestanding 3D metallic micromesh for high-performance flexible transparent solid-state zinc batteries. Small. 2022;18:2201628. https://doi.org/10.1002/smll.202201628.

    Article  CAS  Google Scholar 

  71. Li H, Xu C, Han C, Chen Y, Wei C, Li B, Kang F. Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries. J Electrochem Soc. 2015;162:A1439. https://doi.org/10.1149/2.0141508jes.

    Article  CAS  Google Scholar 

  72. Zhang L, Chen L, Zhou X, Liu Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv Energy Mater. 2015;5:1400930. https://doi.org/10.1002/aenm.201400930.

    Article  CAS  Google Scholar 

  73. Deyab MA. Application of nonionic surfactant as a corrosion inhibitor for zinc in alkaline battery solution. J Power Sources. 2015;292:66. https://doi.org/10.1016/j.jpowsour.2015.05.040.

    Article  CAS  Google Scholar 

  74. Liu B, Wang S, Wang Z, Lei H, Chen Z, Mai W. Novel 3D nanoporous Zn–Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small. 2020;16:2001323. https://doi.org/10.1002/smll.202001323.

    Article  CAS  Google Scholar 

  75. Qi Z, Xiong T, Chen T, Yu C, Zhang M, Yang Y, Deng Z, Xiao H, Lee WSV, Xue J. Dendrite-free anodes enabled by a composite of a ZnAl alloy with a copper mesh for high-performing aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2021;13:28129. https://doi.org/10.1021/acsami.1c04797.

    Article  CAS  Google Scholar 

  76. Fan X, Yang H, Wang X, Han J, Wu Y, Gou L, Li DL, Ding YL. Enabling stable Zn anode via a facile alloying strategy and 3D foam structure. Adv Mater Interfaces. 2021;8:2002184. https://doi.org/10.1002/admi.202002184.

    Article  CAS  Google Scholar 

  77. Fayette M, Chang HJ, Rodrıǵuez-Peŕez IA, Li X, Reed D. Electrodeposited zinc-based films as anodes for aqueous zinc batteries. ACS Appl Mater Interfaces. 2020;12:42763. https://doi.org/10.1021/acsami.0c10956.

    Article  CAS  Google Scholar 

  78. Kwon M, Lee J, Ko S, Lim G, Yu SH, Hong J, Lee M. Stimulating Cu-Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors. Energy Environ Sci. 2022;15:2889. https://doi.org/10.1039/D2EE00617K.

    Article  CAS  Google Scholar 

  79. Meng H, Ran Q, Dai TY, Shi H, Zeng SP, Zhu YF, Wen Z, Zhang W, Lang XY, Zheng WT, Jiang Q. Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 2022;14:128. https://doi.org/10.1007/s40820-022-00867-9.

    Article  CAS  Google Scholar 

  80. Xie S, Li Y, Dong L. Stable anode-free zinc-ion batteries enabled by alloy network-modulated zinc deposition interface. J Energy Chem. 2023;76:32. https://doi.org/10.1016/j.jechem.2022.08.040.

    Article  CAS  Google Scholar 

  81. Li B, Yang K, Ma J, Shi P, Chen L, Chen C, Hong X, Cheng X, Tang MC, He YB, Kang F. Multicomponent copper-zinc alloy layer enabling ultra-stable zinc metal anode of aqueous Zn-ion battery. Angew Chem Int Ed. 2022;61:e202212587. https://doi.org/10.1002/anie.202212587.

    Article  CAS  Google Scholar 

  82. Zhao Q, Liu W, Chen Y, Chen L. Ultra-stable Zn metal batteries with dendrite-free Cu-Sn alloy induced high-quality composite Zn mesh. Chem Eng J. 2022;450:137979. https://doi.org/10.1016/j.cej.2022.137979.

    Article  CAS  Google Scholar 

  83. Wang L, Huang W, Guo W, Guo ZH, Chang C, Gao L, Pu X. Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv Funct Mater. 2021;32:2108533. https://doi.org/10.1002/adfm.202108533.

    Article  CAS  Google Scholar 

  84. Zhou M, Fu C, Qin L, Ran Q, Guo S, Fang G, Lang X, Jiang Q, Liang S. Intrinsic structural optimization of zinc anode with uniform second phase for stable zinc metal batteries. Energy Storage Mater. 2022;52:161. https://doi.org/10.1016/j.ensm.2022.06.058.

    Article  Google Scholar 

  85. Zheng J, Huang Z, Zeng Y, Liu W, Wei B, Qi Z, Wang Z, Xia C, Liang H. Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 2022;22:1017. https://doi.org/10.1021/acs.nanolett.1c03917.

    Article  CAS  Google Scholar 

  86. Sun J, Zheng X, Li K, Ma G, Dai T, Ban B, Yuan Y, Wang M, Chuai M, Xu Y, Liu Z, Jiang T, Zhu Z, Chen J, Hu H, Chen W. Scalable production of hydrogen evolution corrosion resistant Zn-Al alloy anode for electrolytic MnO2/Zn batteries. Energy Storage Mater. 2023;54:570. https://doi.org/10.1016/j.ensm.2022.10.059.

    Article  Google Scholar 

  87. Fayette M, Chang HJ, Li X, Reed D. High-performance InZn alloy anodes toward practical aqueous zinc batteries. ACS Energy Lett. 2022;7:1888. https://doi.org/10.1021/acsenergylett.2c00843.

    Article  CAS  Google Scholar 

  88. Chai Y, Xie X, He Z, Guo G, Wang P, Xing Z, Lu B, Liang S, Tang Y, Zhou J. A smelting-rolling strategy for ZnIn bulk phase alloy anode. Chem Sci. 2022;13:11665. https://doi.org/10.1039/D2SC04385H.

    Article  Google Scholar 

  89. Zhang Y, Howe JD, Ben-Yoseph S, Wu Y, Liu N. Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett. 2021;6:404. https://doi.org/10.1021/acsenergylett.0c02343.

    Article  CAS  Google Scholar 

  90. Tao H, Hou Z, Zhang L, Yang X, Fan LZ. Manipulating alloying reaction to achieve the stable and dendrite-free zinc metal anodes. Chem Eng J. 2022;450:138048. https://doi.org/10.1016/j.cej.2022.138048.

    Article  CAS  Google Scholar 

  91. Jia H, Wang Z, Dirican M, Qiu S, Chan CY, Fu S, Fei B, Zhang X. A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J Mater Chem A. 2021;9:5597. https://doi.org/10.1039/D0TA11828A.

    Article  CAS  Google Scholar 

  92. Zhang Y, Yang X, Hu Y, Hu K, Lin X, Liu X, Reddy KM, Xie G, Qiu HJ. Highly strengthened and toughened Zn–Li–Mn Alloys as long-cycling life and dendrite-free Zn anode for aqueous zinc-ion batteries. Small. 2022;18:2200787. https://doi.org/10.1002/smll.202200787.

    Article  CAS  Google Scholar 

  93. Guo W, Zhang Y, Tong X, Wang X, Zhang L, Xia X, Tu J. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater Today Energy. 2021;20:100675. https://doi.org/10.1016/j.mtener.2021.100675.

    Article  CAS  Google Scholar 

  94. Miao Z, Du M, Li H, Zhang F, Jiang H, Sang Y, Li Q, Liu H, Wang S. Constructing nano-channeled tin layer on metal zinc for high-performance zinc-ion batteries anode. EcoMat. 2021;3:e12125. https://doi.org/10.1002/eom2.12125.

    Article  CAS  Google Scholar 

  95. Zhang Z, Wang R, Hu J, Li M, Wang K, Jiang K. An in situ self-assembled 3D zincophilic heterogeneous metal layer on zinc metal surface for dendrite-free aqueous zinc-ion batteries. Sustain Energy Fuels. 2021;5:5843. https://doi.org/10.1039/D1SE01317C.

    Article  CAS  Google Scholar 

  96. Li Y, Jia H, Ali U, Liu B, Gao Y, Li L, Zhang L, Chai F, Wang C. In-situ interfacial layer with ultrafine structure enabling zinc metal anodes at high areal capacity. Chem Eng J. 2022;450:138374. https://doi.org/10.1016/j.cej.2022.138374.

    Article  CAS  Google Scholar 

  97. Wang Y, Chen Y, Liu W, Ni X, Qing P, Zhao Q, Wei W, Ji X, Ma J, Chen L. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J Mater Chem A. 2021;9:8452. https://doi.org/10.1039/D0TA12177K.

    Article  CAS  Google Scholar 

  98. Lu Q, Liu C, Du Y, Wang X, Ding L, Omar A, Mikhailova D. Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2021;13:16869. https://doi.org/10.1021/acsami.0c22911.

    Article  CAS  Google Scholar 

  99. Li Z, Wang H, Zhong Y, Yuan L, Huang Y, Li Z. Highly reversible and anticorrosive Zn anode enabled by a Ag nanowires layer. ACS Appl Mater Interfaces. 2022;14:9097. https://doi.org/10.1021/acsami.1c22873.

    Article  CAS  Google Scholar 

  100. Han D, Wu S, Zhang S, Deng Y, Cui C, Zhang L, Long Y, Li H, Tao Y, Weng Z, Yang QH, Kang F. A corrosion-resistant and dendrite-free zinc metal anodein aqueous systems. Small. 2020;16:2001736. https://doi.org/10.1002/smll.202001736.

    Article  CAS  Google Scholar 

  101. Xiao P, Li H, Fu J, Zeng C, Zhao Y, Zhai T, Li H. An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy Environ Sci. 2022;15:1638. https://doi.org/10.1039/D1EE03882F.

    Article  CAS  Google Scholar 

  102. Hong L, Wang LY, Wang Y, Wu X, Huang W, Zhou Y, Wang KX, Chen JS. Toward hydrogen-free and dendrite-free aqueous zinc batteries: formation of zincophilic protective layer on Zn anodes. Adv Sci. 2022;9:2104866. https://doi.org/10.1002/advs.202104866.

    Article  CAS  Google Scholar 

  103. Xie S, Li Y, Li X, Zhou Y, Dang Z, Rong J, Dong L. Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 2022;14:39. https://doi.org/10.1007/s40820-021-00783-4.

    Article  CAS  Google Scholar 

  104. Wang M, Meng Y, Li K, Ahmad T, Chen N, Xu Y, Sun J, Chuai M, Zheng X, Yuan Y, Shen C, Zhang Z, Chen W. Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience. 2022;2:509. https://doi.org/10.1016/j.esci.2022.04.003.

    Article  Google Scholar 

  105. Lu H, Jin Q, Jiang X, Dang ZM, Zhang D, Jin Y. Vertical crystal plane matching between AgZn3 (002) and Zn (002) achieving a dendrite-free zinc anode. Small. 2022;18:2200131. https://doi.org/10.1002/smll.202200131.

    Article  CAS  Google Scholar 

  106. Liu C, Luo Z, Deng W, Wei W, Chen L, Pan A, Ma J, Wang C, Zhu L, Xie L, Cao XY, Hu J, Zou G, Hou H, Ji X. Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett. 2021;6:675. https://doi.org/10.1021/acsenergylett.0c02569.

    Article  CAS  Google Scholar 

  107. Wang D, Lv D, Peng H, Wang N, Liu H, Yang J, Qian Y. Site-selective adsorption on ZnF2/Ag coated Zn for advanced aqueous zinc−metal batteries at low temperature. Nano Lett. 2022;22:1750. https://doi.org/10.1021/acs.nanolett.1c04975.

    Article  CAS  Google Scholar 

  108. Yu H, Zeng Y, Li NW, Luan D, Yu L, Lou XW. Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Sci Adv. 2022;8:eabm5766. https://doi.org/10.1126/sciadv.abm576.

    Article  CAS  Google Scholar 

  109. Yin J, Wang Y, Zhu Y, Jin J, Chen C, Yuan Y, Bayhan Z, Salah N, Alhebshi NA, Zhang W, Schwingenschlögl U, Alshareef HN. Regulating the redox reversibility of zinc anode toward stable aqueous zinc batteries. Nano Energy. 2022;99:107331. https://doi.org/10.1016/j.nanoen.2022.107331.

    Article  CAS  Google Scholar 

  110. Xu CL, Li JH, Feng YH, Yuan B, Liu J, Liu M, Shen F, Wang PF, Han X. Multifunctional hybrid interface enables controllable zinc deposition for aqueous Zn-ion batteries. J Power Sources. 2022;548:232044. https://doi.org/10.1016/j.jpowsour.2022.232044.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 62101296), the Natural Science Foundation of Shaanxi Province (No. 2021JQ-760 and 2021JQ-756).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng-Wei Qiu or Dan Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Jia, SF., Cao, MH. et al. Progress in research on metal-based materials in stabilized Zn anodes. Rare Met. 43, 20–40 (2024). https://doi.org/10.1007/s12598-023-02441-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02441-7

Keywords

Navigation