Skip to main content
Log in

Electrochemical reconstruction: a new perspective on Sn metal–organic complex microbelts as robust anode for lithium storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

A Correction to this article was published on 01 April 2024

This article has been updated

Abstract

Tin-based materials with high theoretical capacity and suitable working voltage are ideal anode materials for lithium-ion batteries (LIBs). However, to overcome their shortcomings (volume expansion and inferior stability), the preparation processes are usually complicated and expensive. Herein, a tin-based metal–organic complex (tin 1,2-benzenedicarboxylic acid, Sn-BDC) with one-dimensional microbelt morphology is synthesized by a facile, rapid and low-cost co-precipitation method, and served as anode material for LIBs without any post-treatment. Sn-BDC exhibits a high reversible capacity with 609/440 mAh·g−1 at 50/2000 mA·g−1, and robust cycling stability of 856 mAh·g−1 after 200 cycles at 200 mA·g−1, which are obviously superior to that of the SnOx/C counterparts. Moreover, an electrochemical reconstruction perspective on the lithium storage mechanism of Sn-BDC is proposed by systematic ex-situ characterizations. The reconstructed SnO2 replaces Sn-BDC and becomes the active material in the subsequent cycles. As the by-product of the lithiation reaction, the formed Li-based metal–organic complex (Li-BDC, wrapped around the reconstructed SnO2) plays an important role in alleviating volume expansion and accelerating the charge transfer kinetics. This work is beneficial to design and construct the new electrode materials based on the electrochemical reconstruction for advanced LIBs.

Graphical abstract

摘要

锡基材料具有较高的理论容量和合适的工作电压, 是锂离子电池理想的负极材料。为了克服它们的缺点(体积膨胀和稳定性差), 其制备过程通常是复杂和昂贵的。本文采用简便、快速、低成本的共沉淀法合成了一维微米带形态的锡基金属有机配合物 (Sn-BDC), 并将其作为锂离子电池的负极材料, 无需任何后处理。Sn-BDC在50/2000 mA·g−1下具有609/440 mAh·g−1的高可逆容量, 在200 mA·g−1的电流密度下循环200次具有856 mAh·g−1的稳定性能, 明显优于其热解得到的SnOx/C。此外, 通过系统的非原位表征, 提出了Sn-BDC储锂机理的电化学重构观点。重构的SnO2取代Sn-BDC, 成为后续循环中的活性物质。形成的锂基金属有机配合物(Li-BDC, 包裹在重构SnO2上)作为锂化反应的副产物, 在减轻体积膨胀和加速电荷转移动力学方面发挥着重要作用。本工作有利于基于电化学改造的新型锂离子电池电极材料的设计和构建。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Yan S, Abhilash KP, Tang L, Yang M, Ma Y, Xia Q, Guo Q, Xia H. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small. 2019;15(4):1804371. https://doi.org/10.1002/smll.201804371.

    Article  CAS  Google Scholar 

  2. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy. 2018;3(4):267. https://doi.org/10.1038/s41560-018-0107-2.

    Article  CAS  Google Scholar 

  3. Liu G, Zhang T, Li X, Li J, Wu N, Cao A, Yuan W, Pan KM, Guo D, Liu X. MoS2@C with S vacancies vertically anchored on V2C-MXene for efficient lithium and sodium storage. Inorg Chem Front. 2023. https://doi.org/10.1039/D2Q102389J.

    Article  Google Scholar 

  4. Xin F, Whittingham MS. Challenges and development of tin-based anode with high volumetric capacity for Li-ion batteries. Electrochemical Energy Rev. 2020;3(4):643. https://doi.org/10.1007/s41918-020-00082-3.

    Article  CAS  Google Scholar 

  5. Xu GL, Gong YD, Miao C, Wang Q, Nie SQ, Xin Y, Wen MY, Liu J, Xiao W. Sn nanoparticles embedded into porous hydrogel-derived pyrolytic carbon as composite anode materials for lithium-ion batteries. Rare Met. 2022;41(10):3421. https://doi.org/10.1007/s12598-022-02073-3.

    Article  CAS  Google Scholar 

  6. Zhao JG, Zhou HY, Hu ZA, Wu YW, Jia H, Liu XM. Sn-MOFs/G composite materials for long cycling performance lithium ion batteries. Rare Met. 2022;41(5):1504. https://doi.org/10.1007/s12598-021-01886-y.

    Article  CAS  Google Scholar 

  7. Wu C, Zhu G, Wang Q, Wu M, Zhang H. Sn-based nanomaterials: from composition and structural design to their electrochemical performances for Li- and Na-ion batteries. Energy Storage Mater. 2021;43:430. https://doi.org/10.1016/j.ensm.2019.04.034.

    Article  Google Scholar 

  8. Wu N, Du W, Gao X, Zhao L, Liu G, Liu X, Wu H, He Y. Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries. Nanoscale. 2018;10(24):11460. https://doi.org/10.1039/C8NR02290A.

    Article  CAS  PubMed  Google Scholar 

  9. Xu H, Peng C, Yan Y, Dong F, Sun H, Yang J, Zheng S. Integrated ultrathin SnS2@3D multichannel carbon matrix power high-areal-capacity lithium battery anode. Carbon Energy. 2019;1(2):276. https://doi.org/10.1002/cey2.22.

    Article  CAS  Google Scholar 

  10. Liu G, Sun D, Li X, Liu J, Zhang Y, Yuan W, Guo D, Wu N, Liu X. Sandwich-like SnS/N, S co-doped rGO/SnS structure with pseudocapacitance for high-performance Li- and Na-ion batteries. J Mater Sci. 2020;55(29):14477. https://doi.org/10.1007/s10853-020-05056-w.

    Article  CAS  Google Scholar 

  11. Gao S, Wang N, Li S, Li D, Cui Z, Yue G, Liu J, Zhao X, Jiang L, Zhao Y. A multi-wall Sn/SnO2@Carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew Chem Int Ed. 2020;59(6):2465. https://doi.org/10.1002/anie.201913170.

    Article  CAS  Google Scholar 

  12. Wu C, Xie K, He J, Wang Q, Ma J, Yang S, Wang Q. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance. Rare Met. 2020;40(1):48. https://doi.org/10.1007/s12598-020-01623-x.

    Article  CAS  Google Scholar 

  13. Liu H, Zhang X, Zhu Y, Cao B, Zhu Q, Zhang P, Xu B, Wu F, Chen R. Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 2019;11(1):65. https://doi.org/10.1016/j.cej.2020.126775.

    Article  CAS  Google Scholar 

  14. Liu J, Chang Y, Sun K, Guo P, Cao D, Ma Y, Liu D, Liu Q, Fu Y, Liu J, He D. Sheet-like stacking SnS2/rGO heterostructures as ultrastable anodes for lithium-ion batteries. ACS Appl Mater Inter. 2022;14(9):11739. https://doi.org/10.1021/acsami.1c18268.

    Article  CAS  Google Scholar 

  15. Cheng Y, Xie H, Zhou L, Shi B, Guo L, Huang J. In-situ liquid-phase transformation of Sns2/Cnts composite from SnO2/CNTs for high performance lithium-ion battery anode. Appl Surf Sci. 2021;566:150645. https://doi.org/10.1016/j.apsusc.2021.150645.

    Article  CAS  Google Scholar 

  16. Zhao W, Yuan Y, Du P, Zhu M, Yin S, Guo S. Multi-shelled hollow nanospheres of SnO2/Sn@TiO2@C composite as high-performance anode for lithium-ion batteries. ChemElectroChem. 2021;8(17):3282. https://doi.org/10.1002/celc.202100613.

    Article  CAS  Google Scholar 

  17. Jin S, Gu F, Wang J, Ma X, Qian C, Lan Y, Han Q, Li J, Wang X, Zhang R, Qiao W, Ling L, Jin M. Elaborate interface design of SnS2/SnO2@C/rGO nanocomposite as a high-performance anode for lithium-ion batteries. Electrochim Acta. 2022;405:139799. https://doi.org/10.1016/j.electacta.2021.139799.

    Article  CAS  Google Scholar 

  18. Huang B, Li X, Pei Y, Li S, Cao X, Masse RC, Cao G. Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small. 2016;12(14):1945. https://doi.org/10.1002/smll.201503419.

    Article  CAS  PubMed  Google Scholar 

  19. Li R, Nie S, Miao C, Xin Y, Mou H, Xu G, Xiao W. Heterostructural Sn/SnO2 microcube powders coated by a nitrogen-doped carbon layer as good-performance anode materials for lithium ion batteries. J Colloid Interf Sci. 2022;606:1042. https://doi.org/10.1016/jcis.2021.08.112.

    Article  CAS  Google Scholar 

  20. Feng S, Ma L, Lin J, Lu X, Xu L, Wu J, Yan X, Fan X. SnS nanoparticles anchored on nitrogen-doped carbon sheets derived from metal–organic-framework precursors as anodes with enhanced electrochemical sodium ions storage. Electrochim Acta. 2021;387:138535. https://doi.org/10.1016/j.electacta.2021.138535.

    Article  CAS  Google Scholar 

  21. Saini H, Srinivasan N, Šedajová V, Majumder M, Dubal DP, Otyepka M, Zbořil R, Kurra N, Fischer RA, Jayaramulu K. Emerging MXene@Metal–organic framework hybrids: design strategies toward versatile applications. ACS Nano. 2021;15(12):18742. https://doi.org/10.1021/acsnano.1c06402.

    Article  CAS  PubMed  Google Scholar 

  22. Yang S, Park SK, Kang Y. MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries. Nano-Micro Lett. 2021;13(1):9. https://doi.org/10.1007/s40820-020-00539-6.

    Article  CAS  Google Scholar 

  23. Liu K, Li C, Yan L, Fan M, Wu Y, Meng X, Ma T. MOFs and their derivatives as Sn-based anode materials for lithium/sodium ion batteries. J Mater Chem A. 2021;9(48):27234. https://doi.org/10.1039/D1TA06996A.

    Article  CAS  Google Scholar 

  24. Zhao X, Xu H, Hui Z, Sun Y, Yu C, Xue J, Zhou R, Wang L, Dai H, Zhao Y, Yang J, Zhou J, Chen Q, Sun G, Huang W. Electrostatically assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced lithium storage. Small. 2019;15(47):1904255. https://doi.org/10.1002/smll.201904255.

    Article  CAS  Google Scholar 

  25. Zhang H, Xin S, Li J, Cui H, Liu Y, Yang Y, Wang M. Synergistic regulation of polysulfides immobilization and conversion by MOF-derived CoP-HNC nanocages for high-performance lithium-sulfur batteries. Nano Energy. 2021;85:106011. https://doi.org/10.1016/j.nanoen.2021.106011.

    Article  CAS  Google Scholar 

  26. Zou G, Hou H, Zhao G, Ge P, Yin D, Ji X. N-rich carbon coated CoSnO3 derived from in situ construction of a Co-MOF with enhanced sodium storage performance. J Mater Chem A. 2018;6(11):4839.

    Article  CAS  Google Scholar 

  27. Gao J, Hu Y, Wang Y, Lin X, Hu K, Lin X, Xie G, Liu X, Reddy KM, Yuan Q, Qiu H. MOF structure engineering to synthesize Co-N-C catalyst with richer accessible active sites for enhanced oxygen reduction. Small. 2021;17(49):2104684. https://doi.org/10.1002/smll.202104684.

    Article  CAS  Google Scholar 

  28. Wang X, Chai L, Ding J, Zhong L, Du Y, Li T, Hu Y, Qian J, Huang S. Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution. Nano Energy. 2019;62:745. https://doi.org/10.1016/j.nanoen.2019.06.002.

    Article  CAS  Google Scholar 

  29. Ma D, Zhu Q. MOF-based atomically dispersed metal catalysts: recent progress towards novel atomic configurations and electrocatalytic applications. Coordin Chem Rev. 2020;422:213483. https://doi.org/10.1016/j.ccr.2020.213483.

    Article  CAS  Google Scholar 

  30. Vijayakumar E, Ramakrishnan S, Sathiskumar C, Yoo DJ, Balamurugan J, Noh HS, Kwon D, Kim YH, Lee H. MOF-derived CoP-nitrogen-doped carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc–air batteries. Chem Eng J. 2022;428:131115. https://doi.org/10.1016/j.cej.2021.131115.

    Article  CAS  Google Scholar 

  31. Li J, Zhang Q, Zhang J, Wu N, Liu G, Chen H, Yuan C, Liu X. Optimizing electronic structure of porous Ni/MoO2 heterostructure to boost alkaline hydrogen evolution reaction. J Colloid Interf Sci. 2022;627:862. https://doi.org/10.1016/j.jcis.2022.07.118.

    Article  CAS  Google Scholar 

  32. Huang M, Wang L, Pei K, You W, Yu X, Wu Z, Che R. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small. 2020;16(14):2000158. https://doi.org/10.1002/smll.202000158.

    Article  CAS  Google Scholar 

  33. Xiang Z, Huang C, Song Y, Deng B, Zhang X, Zhu X, Batalu D, Tutunaru O, Lu W. Rational construction of hierarchical accordion-like Ni@Porous carbon nanocomposites derived from metal–organic frameworks with enhanced microwave absorption. Carbon. 2020;167:364. https://doi.org/10.1016/j.carbon.2020.06.015.

    Article  CAS  Google Scholar 

  34. Cheng R, Wang Y, Di X, Lu Z, Wang P, Ma M, Ye J. Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J Colloid Interf Sci. 2022;609:224. https://doi.org/10.1016/j.jcis.2021.11.197.

    Article  CAS  Google Scholar 

  35. Ma X, Deng Z, Li Z, Chen D, Wan X, Wang X, Peng X. A photothermal and fenton active MOF-based membrane for high-efficiency solar water evaporation and clean water production. J Mater Chem A. 2020;8(43):22728. https://doi.org/10.1039/D0TA08101A.

    Article  CAS  Google Scholar 

  36. Chen T, Hao Z, Wang H, Li J, Zhao P, Huang W. Preparation and performance research of Ag@Co-based metal organic polymer composites and their non-enzymatic glucose sensors. Chin J Rare Met. 2022;46(1):36. https://doi.org/10.13373/j.cnki.cjrm.XY21100014

    Google Scholar 

  37. Wang D, Jana D, Zhao Y. Metal–organic framework derived nanozymes in biomedicine. Accounts Chem Res. 2020;53(7):1389. https://doi.org/10.1021/acs.accounts.0c00268.

    Article  CAS  Google Scholar 

  38. Li C, Hu X, Tong W, Yan W, Lou X, Shen M, Hu B. Ultrathin manganese-based metal–organic framework nanosheets: low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities. ACS Appl Mater Inter. 2017;9(35):29829. https://doi.org/10.1021/acsami.7b09363.

    Article  CAS  Google Scholar 

  39. Maiti S, Pramanik A, Manju U, Mahanty S. Reversible lithium storage in manganese 1,3,5-benzenetricarboxylate metal–organic framework with high capacity and rate performance. ACS Appl Mater Inter. 2015;7(30):16357. https://doi.org/10.1021/acsami.5b03414.

    Article  CAS  Google Scholar 

  40. Gong T, Lou X, Gao E, Hu B. Pillared-layer metal–organic frameworks for improved lithium-ion storage performance. ACS Appl Mater Inter. 2017;9(26):21839. https://doi.org/10.1021/acsami.7b05889.

    Article  CAS  Google Scholar 

  41. Zhang Y, Niu Y, Liu T, Li Y, Wang M, Hou J, Xu M. A nickel-based metal–organic framework: a novel optimized anode material for Li-ion batteries. Mater Lett. 2015;161:712. https://doi.org/10.1016/j.matlet.2015.09.079.

    Article  CAS  Google Scholar 

  42. Xiao X, Deng X, Tian Y, Tao S, Song Z, Deng W, Hou H, Zou G, Ji X. Ultrathin two-dimensional nanosheet metal-organic frameworks with high-density ligand active sites for advanced lithium-ion capacitors. Nano Energy. 2022;103:107797. https://doi.org/10.1016/j.nanoen.2022.107797.

    Article  CAS  Google Scholar 

  43. Liu J, Xie D, Xu X, Jiang L, Si R, Shi W, Cheng P. Reversible formation of coordination bonds in Sn-based metal–organic frameworks for high-performance lithium storage. Nat Commun. 2021;12(1):3131. https://doi.org/10.1038/s41467-021-23335-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan X, Fan C, Yang X, Wang Y, Hou B, Pang W, Wu X. A cation/anion-dually active metal–organic complex with 2D lamellar structure as anode material for Li/Na-ion batteries. Mater Today Energy. 2019;13:302. https://doi.org/10.1016/j.mtener.2019.06.002.

    Article  Google Scholar 

  45. Wang X, Liu L, Makarenko T, Jacobson AJ. Influence of ligand geometry on the dimensionality of Sn (II) benzenedicarboxylate crystal structures. Cryst Growth Des. 2010;10(8):3752. https://doi.org/10.1021/cg1005874.

    Article  CAS  Google Scholar 

  46. Chouvin J, Olivier-Fourcade J, Jumas JC, Simon B, Biensan Ph, Fernandez Madrigal FJ, Tirado JL, Vicente CPR. SnO reduction in lithium cells: study by X-ray absorption, 119Sn Mössbauer spectroscopy and X-ray diffraction. J Electroanal Chem. 2000;494:136. https://doi.org/10.1016/S0022-0728(00)00357-0.

    Article  CAS  Google Scholar 

  47. Soulmi N, Sougrati MT, Stievano L, Porras Gutierrez AG, Lebedev OI, Rizzi C, Sirieix-Plénet J, Gaillon L, Groult H, Dambournet D. Lithium-driven conversion and alloying mechanisms in core-shell Sn/SnOx nanoparticles. Solid State Sci. 2020;101:106153. https://doi.org/10.1016/j.solidstatesciences.2020.106153.

    Article  CAS  Google Scholar 

  48. de Kergommeaux A, Faure-Vincent J, Pron A, de Bettignies R, Malaman B, Reiss P. Surface oxidation of tin chalcogenide nanocrystals revealed by 119Sn-Mössbauer spectroscopy. J Am Chem Soc. 2012;134(28):11659. https://doi.org/10.1021/ja3033313.

    Article  CAS  PubMed  Google Scholar 

  49. Li X, Zhang N, Wu Y, Lai Q, Zhu Y, Zhang J, Cui P, Yi T. Interconnected Bi5Nb3O15@CNTs network as high-performance anode materials of Li-ion battery. Rare Met. 2022;41(10):3401. https://doi.org/10.1007/s12598-022-02049-3.

    Article  CAS  Google Scholar 

  50. Yi T, Qiu L, Mei J, Qi S, Cui P, Luo S, Zhu Y, Xie Y, He Y. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci Bull. 2020;65(7):546. https://doi.org/10.1016/j.scib.2020.01.011.

    Article  CAS  Google Scholar 

  51. Wei T, Peng P, Ji Y, Zhu Y, Yi T, Xie Y. Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J Energy Chem. 2022;71:400. https://doi.org/10.1016/j.jechem.2022.04.017.

    Article  CAS  Google Scholar 

  52. Liu G, Xu L, Li Y, Guo D, Wu N, Yuan C, Qin A, Cao A, Liu X. Metal–organic frameworks derived anatase/rutile heterostructures with enhanced reaction kinetics for lithium and sodium storage. Chem Eng J. 2022;430:132689. https://doi.org/10.1016/j.cej.2021.132689.

    Article  CAS  Google Scholar 

  53. Wu N, Wu H, Yuan W, Liu S, Liao J, Zhang Y. Facile aynthesis of one-dimensional LiNi0.8Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries. J Mater Chem A. 2015;3(26):13648. https://doi.org/10.1039/c5ta02767e.

    Article  CAS  Google Scholar 

  54. Wu N, Shen J, Sun L, Yuan M, Shao Y, Ma J, Liu G, Guo D, Liu X, He Y. Hierarchical N-doped graphene coated 1D cobalt oxide microrods for robust and fast lithium storage at elevated temperature. Electrochim Acta. 2019;310:70. https://doi.org/10.1016/j.electacta.2019.04.115.

    Article  CAS  Google Scholar 

  55. Wen G, Tan L, Lan X, Zhang H, Hu R, Yuan B, Liu J, Zhu M. Li2CO3 induced stable SEI formation: an efficient strategy to boost reversibility and cyclability of Li storage in SnO2 anodes. Sci China Mater. 2021;64(11):2683. https://doi.org/10.1007/s40843-021-1665-1.

    Article  CAS  Google Scholar 

  56. Lan X, Xiong X, Liu J, Yuan B, Hu R, Zhu M. Insight into reversible conversion reactions in SnO2-based anodes for lithium storage: a review. Small. 2022;18(26):2201110. https://doi.org/10.1002/smll.202201110.

    Article  CAS  Google Scholar 

  57. Deng P, Yang J, Li S, Fan T, Wu H, Mou Y, Huang H, Zhang Q, Peng D, Qu B. High initial reversible capacity and long life of ternary SnO2-Co-carbon nanocomposite anodes for lithium-ion batteries. Nano-Micro Lett. 2019;11(1):18. https://doi.org/10.1007/s40820-019-0246-4.

    Article  CAS  Google Scholar 

  58. Liang T, Hu R, Zhang H, Zhang H, Wang H, Ouyang Y, Liu J, Yang L, Zhu M. A Scalable ternary SnO2-Co-C composite as a high initial coulombic efficiency, large capacity and long lifetime anode for lithium ion batteries. J Mater Chem A. 2018;6(16):7206. https://doi.org/10.1007/s40820-019-0246-4.

    Article  CAS  Google Scholar 

  59. Hu R, Ouyang Y, Liang T, Tang X, Yuan B, Liu J, Zhang L, Yang L, Zhu M. Inhibiting grain coarsening and inducing oxygen vacancies: the roles of Mn in achieving a highly reversible conversion reaction and a long life SnO2-Mn-graphite ternary anode. Energ Environ Sci. 2017;10(9):2017. https://doi.org/10.1039/C7EE01635B.

    Article  CAS  Google Scholar 

  60. Wu N, Wu H, Qiao X, Shen J, Liu X, Liu G, Sun T, Hou H, Zhang Y, Ji X. Anatase inverse opal TiO2-x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochim Acta. 2019;299:540. https://doi.org/10.1016/j.electacta.2019.01.040.

    Article  CAS  Google Scholar 

  61. Liu G, Xiao F, Zhang T, Gu Y, Li J, Guo D, Xu M, Wu N, Cao A, Liu X. In-Situ Growth of MoO2@N doped carbon on Mo2C-Mxene for superior lithium storage. Appl Surf Sci. 2022;597:153688. https://doi.org/10.1016/j.apsusc.2022.153688.

    Article  CAS  Google Scholar 

  62. Chen Z, Su H, Sun P, Bai P, Yang J, Li M, Deng Y, Liu Y, Geng Y, Xu Y. A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries. Proc Natl Acad Sci. 2022;119(6):e2116775119. https://doi.org/10.1073/pnas.2116775119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao G, Sun Y, Yang Y, Zhang C, An Q, Guo H. Molecular engineering regulation redox-dual-active-center covalent organic frameworks-based anode for high-performance Li storage. EcoMat. 2022;4:e212221. https://doi.org/10.1007/s11032-014-0135-y.

    Article  CAS  Google Scholar 

  64. Wu N, Yang Y, Jia T, Li T, Li F, Wang Z. Sodium-tin metal–organic framework anode material with advanced lithium storage properties for lithium-ion batteries. J Mater Sci. 2020;55(14):6030. https://doi.org/10.1007/s10853-020-04436-6.

    Article  CAS  Google Scholar 

  65. Wu N, Tian W, Shen J, Qiao X, Sun T, Wu H, Zhao J, Liu X, Zhang Y. Facile fabrication of a jarosite ultrathin KFe3(SO4)2(OH)6@RGO nanosheet hybrid composite with pseudocapacitive contribution as a robust anode for lithium-ion batteries. Inorg Chem Front. 2019;6(1):192. https://doi.org/10.1039/C8QI01165F.

    Article  CAS  Google Scholar 

  66. Lan X, Cui J, Xiong X, He J, Yu H, Hu R. Multiscale observations of inhomogeneous bilayer SEI film on a conversion-alloying SnO2 anode. Small Methods. 2021;5(12):2101111. https://doi.org/10.1080/21663831.2013.766275.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundations of China (Nos. 51904152, 21965033 and U2003216), the Natural Science Foundations of Henan Province (No. 222300420502), the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 20HASTIT020) and the Key Science and Technology Program of Henan Province (No. 222102240044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nai-Teng Wu, Hong-Yu Mi or Huan Pang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

The original publication has been revised for update in affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5690 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, JK., Wu, NT., Wang, LY. et al. Electrochemical reconstruction: a new perspective on Sn metal–organic complex microbelts as robust anode for lithium storage. Rare Met. 43, 76–86 (2024). https://doi.org/10.1007/s12598-023-02408-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02408-8

Keywords

Navigation