Skip to main content
Log in

Nitrogen–sulfur co-doped porous carbon derived from asphalt as efficient catalyst for oxygen reduction

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

沥青作为一种环保、低成本的石化副产品, 在制备性能优异、稳定性突出的无金属氧还原电催化剂方面具有巨大潜力。本文以柠檬酸钾为溶胀剂, 通过简单的活化方法将沥青转化为多孔碳纳米片。然后采用有效的杂原子掺杂方法制备了氮硫共掺杂多孔碳纳米片 (NS-PCN) 作为ORR电催化剂。在ORR反应过程中, 碳纳米片表现出优异的活性, 正半波电位较高, 为0.831 V, Tafel斜率仅为64.8 mV dec-1, 这是由于多孔碳丰富的比表面积和暴露的活性位点数量的增加引起的快速电子传输, 以及氮和硫的引入使缺陷密度富集.与Pt/C基锌空气电池相比, 组装的液态锌空气电池在碱性条件下也表现出更高的放电功率和稳定性。综上所述, 本研究不仅为简单开发高性价比的无金属ORR电催化剂提供了新的思路, 而且为工业沥青的可持续应用提供了新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Stamenkovic VR, Strmcnik D, Lopes PP, Markovic NM. Energy and fuels from electrochemical interfaces. Nat Mater. 2017;16:57. https://doi.org/10.1038/nmat4738.

    Article  CAS  Google Scholar 

  2. Gan Y, Wang C, Li JY, Zheng JJ, Wan HZ, Wang H. Stability optimization strategy of aqueous zinc ion batteries. Chin J of Rare Met. 2022;46(6):753. https://doi.org/10.13373/j.cnki.cjrm.XY21100036.

  3. Wang YX, Zhong SB, Sun FC. Research progress in vehicular high mass density solid hydrogen storage materials. Chin J of Rare Met. 2022;46(6):796. https://doi.org/10.13373/j.cnki.cjrm.XY21120007.

  4. Sharifi T, Gracia-Espino E, Chen A, Hu G, Wågberg T. Oxygen reduction reactions on single- or few-atom discrete active sites for heterogeneous catalysis. Adv Energy Mater. 2019;10(11):1902084. https://doi.org/10.1002/aenm.201902084.

    Article  CAS  Google Scholar 

  5. Chen C, Tang ZJ, Li JY, Du CY, Ouyang T, Xiao K, Liu ZQ. MnO enabling highly efficient and stable Co-Nx/C for oxygen reduction reaction in both acidic and alkaline media. Adv Funct Meter. 2023;33(1):2210143. https://doi.org/10.1002/adfm.202210143.

  6. Chen JJ, Gu S, Hao R, Wang ZY, Li MQ, Li ZQ, Liu K, Liao KM, Wang ZQ, Huang H, Li YZ, Zhang KL, Lu ZG. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Met. 2022;41(6):2055. https://doi.org/10.1007/s12598-022-01974-7.

  7. Wang XT, Ouyang T, Wang L, Zhong JH, Liu ZQ. Surface reorganization on electrochemically-Induced Zn–Ni–Co spinel oxides for enhanced oxygen electrocatalysis, Angew Chem Int Edition. 2020;59(16):6492. https://doi.org/10.1002/anie.202000690.

  8. Wang XT, Ouyang T, Wang L, Zhong J-H, Ma T , Liu Z-Q. Redox-Inert Fe3+ Ions in octahedral sites of co-fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc–air batteries. Angew Chem Int Edition. 2019;58(38):13291. https://doi.org/10.1002/anie.201907595.

  9. Sun C, Zhao Y-J, Yuan X-Y, Li J-B, Jin H-B. Bimetal nanoparticles hybridized with carbon nanotube boosting bifunctional oxygen electrocatalytic performance. Rare Met. 2022;41(8):2616. https://doi.org/10.1007/s12598-022-02021-1.

    Article  CAS  Google Scholar 

  10. Chen J-J, Gu S, Hao R, Wang Z-Y, Li M-Q, Li Z-Q, Liu K, Liao K-M, Wang Z-Q, Huang H, Li Y-Z, Zhang K-L, Lu Z-G. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Met. 2022;41(6):2055. https://doi.org/10.1007/s12598-022-01974-7.

    Article  CAS  Google Scholar 

  11. Wang XT, Ouyang T, Wang L, Zhong JH, Liu ZQ. Surface reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew Chem Int Ed Engl. 2020;59(16):6492. https://doi.org/10.1002/anie.202000690.

  12. Wang XT, Ouyang T, Wang L, Zhong JH, Ma T, Liu ZQ. Redox-Inert Fe(3+) ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable Zinc-Air batteries. Angew Chem Int Ed Engl. 2019;58(38):13291. https://doi.org/10.1002/anie.201907595.

  13. Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv Mater. 2019;31(13):1804799. https://doi.org/10.1002/adma.201804799.

    Article  CAS  Google Scholar 

  14. Xing L, Song C, Kong A. N–S-codoped mesoporous carbons from melamine-2-thenaldehyde polymers on carbon nanotubes for oxygen reduction and Zn-air batteries. J Solid State Chem. 2020;287:121348. https://doi.org/10.1016/j.jssc.2020.121348.

  15. Huang Y, Wang Y, Tang C, Wang J, Zhang Q, Wang Y, Zhang J. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv Mater. 2019;31(13):180380 https://doi.org/10.1002/adma.201803800.

  16. Liu X, Dai L. Carbon-based metal-free catalysts. Nat Rev Mater. 2016;1(11):16064. https://doi.org/10.1038/natrevmats.2016.64.

  17. Yang M, Long X, Li H, Chen H, Liu P. Porous organic-polymer-derived nitrogen-doped porous carbon nanoparticles for efficient oxygen reduction electrocatalysis and supercapacitors. ACS Sustain Chem Eng. 2018;7(2):2236. https://doi.org/10.1021/acssuschemeng.8b04919.

    Article  CAS  Google Scholar 

  18. Chen H, You S, Ma Y, Zhang C, Jing B, Cai Z, Tang B, Ren N, Zou J. Carbon thin-layer-protected active sites for ZIF-8-derived nitrogen-enriched carbon frameworks/expanded graphite as metal-free catalysts for oxygen reduction in acidic media. Chem Mater. 2018;30(17):6014. https://doi.org/10.1021/acs.chemmater.8b02275.

    Article  CAS  Google Scholar 

  19. Yang L, Zeng X, Wang W, Cao D. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv Func Mater. 2018;28(7):1704537. https://doi.org/10.1002/adfm.201704537.

    Article  CAS  Google Scholar 

  20. Xu Q, Tang Y, Zhang X, Oshima Y, Chen Q, Jiang D. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv Mater. 2018;30(15):1706330. https://doi.org/10.1002/adma.201706330.

    Article  CAS  Google Scholar 

  21. He C, Song S, Liu J, Maragou V, Tsiakaras P. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction. J Power Sources. 2010;195(21):7409. https://doi.org/10.1016/j.jpowsour.2010.05.050.

    Article  CAS  Google Scholar 

  22. Wang Z, Jin H, Meng T, Liao K, Meng W, Yang J, He D, Xiong Y, Mu S. Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv Func Mater. 2018;28(39):1802596. https://doi.org/10.1002/adfm.201802596.

    Article  CAS  Google Scholar 

  23. Ye L, Chai G, Wen Z. Zn-MOF-74 derived N-doped mesoporous carbon as ph-universal electrocatalyst for oxygen reduction reaction. Adv Func Mater. 2017;27(14):1606190. https://doi.org/10.1002/adfm.201606190.

    Article  CAS  Google Scholar 

  24. Yang HB, Miao J, Hung S-F, Cheng J, Tao HB, Wang X, Zhang L, Chen R, Gao J, Chen HM, Dai L, Liu B. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv. 2(4): e1501122. https://doi.org/10.1126/sciadv.1501122.

  25. Zhou Y-N, Zhu Y-R, Chen X-Y, Dong B, Li Q-Z, Chai Y-M. Carbon–based transition metal sulfides/selenides nanostructures for electrocatalytic water splitting. J Alloys Compounds. 2021;852:156810. https://doi.org/10.1016/j.jallcom.2020.156810.

  26. Li J, Zhang Y, Zhang X, Huang J, Han J, Zhang Z, Han X, Xu P , Song B. S, N Dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts. ACS Appl Mater Interfaces. 2017;9(1):398. https://doi.org/10.1021/acsami.6b12547.

  27. Hou CC, Zou L, Xu Q. A Hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites. Adv Mater. 2019;31(46):1904689. https://doi.org/10.1002/adma.201970327.

    Article  CAS  Google Scholar 

  28. Liu L, Zeng G, Chen J, Bi L, Dai L, Wen Z. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy. 2018;49:393. https://doi.org/10.1016/j.nanoen.2018.04.061.

    Article  CAS  Google Scholar 

  29. Hou H, Shao L, Zhang Y, Zou G, Chen J, Ji X. Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv Sci (Weinh). 2017;4(1). https://doi.org/10.1002/advs.201600243.

  30. Gao L, Ying D, Shen T, Zheng Y, Cai J, Wang D, Zhang L. Two-dimensional wrinkled n-rich carbon nanosheets fabricated from chitin via fast pyrolysis as optimized electrocatalyst. ACS Sustain Chem Eng. 2020;8(29):10881. https://doi.org/10.1021/acssuschemeng.0c03104.

    Article  CAS  Google Scholar 

  31. Dong Y, Zhang Q, Tian Z, Li B, Yan W, Wang S, Jiang K, Su J, Oloman CW, Gyenge EL, Ge R, Lu Z, Ji X, Chen L. Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv Mater 2020;32(28). https://doi.org/10.1002/adma.202001300.

  32. Fang W, Dai P, Hu H, Jiang T, Dong H, Wu M. Fe0.96S/Co8FeS8 nanoparticles co-embedded in porous N, S codoped carbon with enhanced bifunctional electrocatalystic activities for all-solid-state Zn-air batteries. Appl Surface Sci. 2020;505:144212. https://doi.org/10.1016/j.apsusc.2019.144212.

  33. Jiang T, Hu H, Lei F, Hu J, Wu M, Ho D. Concurrently realizing geometric confined growth and doping of transition metals within graphene hosts for bifunctional electrocatalysts toward a solid-state rechargeable micro-Zn–Air battery. ACS Appl Mater Interfaces. 2020;12(34):38031. https://doi.org/10.1021/acsami.0c08676.

    Article  CAS  Google Scholar 

  34. Jiang H, Gu J, Zheng X, Liu M, Qiu X, Wang L, Li W, Chen Z, Ji X, Li J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ Sci. 2019;12(1):322. https://doi.org/10.1039/c8ee03276a.

    Article  CAS  Google Scholar 

  35. Tang J, Liu J, Li C, Li Y, Tade MO, Dai S, Yamauchi Y. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew Chem Int Ed Engl. 2015;54(2). https://doi.org/10.1002/ange.201407629.

  36. Liu H, Liu Y, Zhu D. Chemical doping of graphene. J Mater Chem. 2011;21(10):3335. https://doi.org/10.1039/C0JM02922J.

    Article  CAS  Google Scholar 

  37. Wu Z-S, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng H-M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano. 2019;3(2):411. https://doi.org/10.1021/nn900020u.

    Article  CAS  Google Scholar 

  38. Miao Y, Ma Y, Wang Q. Plasma-assisted simultaneous reduction and nitrogen/sulfur codoping of graphene oxide for high-performance supercapacitors. ACS Sustain Chem Eng. 2019;7(8):7597. https://doi.org/10.1021/acssuschemeng.8b05838.

    Article  CAS  Google Scholar 

  39. Yuan H, Hou Y, Abu-Reesh IM, Chen J, He Z. Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review. Mater Horiz. 2016;3(5):382. https://doi.org/10.1039/c6mh00093b.

    Article  CAS  Google Scholar 

  40. Zhan T, Lu S, Liu X, Teng H, Hou W. Alginate derived Co3O4/Co nanoparticles decorated in N-doped porous carbon as an efficient bifunctional catalyst for oxygen evolution and reduction reactions. Electrochim Acta. 2018;265:681. https://doi.org/10.1016/j.electacta.2018.02.006.

    Article  CAS  Google Scholar 

  41. Zeng K, Zheng X, Li C, Yan J, Tian JH, Jin C, Strasser P, Yang R. Recent advances in non-noble bifunctional oxygen electrocatalysts toward large-scale production. Adv Func Mater. 2020;30(27):2000503. https://doi.org/10.1002/adfm.202000503.

    Article  CAS  Google Scholar 

  42. Gu X, Du Y, Zhuo L, Wang Q, Liu S, Tang Y. Enhancement of electrochemical performance of selenium cathode by cobalt and nitrogen codoped hollow carbon spheres. Chin J Rare Met. 2022;46(6):821. https://doi.org/10.13373/j.cnki.cjrm.XY21120030

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U2003132), the National Key R&D Program of China (No. 2021YFA1600202), the Open fund projects from the South- west University of Science and Technology (No. 21kfhg11) and the Opening Foundation of Shanxi Provincial Key Laboratory for High Performance Battery Materials and Devices (No. 2022HPBMD01001)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Zai Wu or Li-Xing Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2352 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, JS., Wu, MZ., Chen, L. et al. Nitrogen–sulfur co-doped porous carbon derived from asphalt as efficient catalyst for oxygen reduction. Rare Met. 43, 380–388 (2024). https://doi.org/10.1007/s12598-023-02401-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02401-1

Navigation