Skip to main content
Log in

Flexible silver nanorods/carbon fiber felt metacomposites with epsilon-near-zero property adjusted by compressive deformation

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Epsilon-near-zero (ENZ) materials exhibit great potentials in the practical applications of sensors, electronic skin, and wearable devices, when they own the properties of flexibility and compression. In this work, the silver nanorods (AgNRs)/carbon fiber felt (CFF) composites with ENZ property from 1 kHz to 1 MHz were achieved by adjusting the content of AgNRs and the compressed elastic deformation. Positive permittivity was obtained from the composite of 2.5 wt% AgNRs without compressive deformation; however, the ENZ property with negative permittivity as small as about − 50 was realized from this composite with 50% compressive deformation. During the process of compressive deformation, the isolated AgNRs were easier to form a conductive network and brought about a lower percolation threshold, resulting in ENZ property. The electron density was enhanced with increasing compressive deformation, which was closely related to negative permittivity and the alternating current conductivity.

Graphical abstract

摘要

具有柔性和可压缩特性的介电近零材料, 在传感器、电子皮肤和可穿戴设备等领域具有重要的应用前景。本研究通过改变银纳米棒的含量和银纳米棒/碳纤维毡复合材料的压缩形变, 使复合材料在1 kHz–1 MHz频段内实现了介电近零特性。对于含有2.5 wt%银纳米棒的复合材料, 在没有压缩形变的情况下, 材料表现为正介电常数; 当压缩形变达到50%时, 复合材料的负介电常数数值低至–50左右并出现了介电近零现象。在压缩形变过程中, 复合材料中孤立的银纳米棒更容易形成导电网络, 降低了逾渗阈值, 从而产生介电近零特性。研究表明, 压缩形变越大, 电子浓度越高, 而复合材料的负介电常数和交流电导率又与电子浓度密切相关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Tian J, Fan R, Zhang Z, Li Y, Wu H, Yang P, Xie P, Duan W, Lee CS. Flexible and biocompatible poly (vinyl alcohol)/multi-walled carbon nanotubes hydrogels with epsilon-near-zero properties. J Mater Sci Technol. 2022;131:91. https://doi.org/10.1016/j.jmst.2022.05.019.

    Article  CAS  Google Scholar 

  2. Zhang Z, Liu M, Ibrahim M, Wu H, Wu Y, Li Y, Mersal G, El Azab I, El-Bahy S, Huang M. Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater. 2022;5(6):1054. https://doi.org/10.1007/s42114-022-00486-3.

    Article  CAS  Google Scholar 

  3. Smith D, Padilla W, Vier D, Nemat-Nasser S, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184. https://doi.org/10.1103/PhysRevLett.84.4184.

    Article  CAS  Google Scholar 

  4. Hu H, Xia K, Zhu T, Zhao X. Recent advances in Ag-based superionic thermoelectric materials. Chin J Rare Met. 2021;45(5):513. https://doi.org/10.13373/j.cnki.cjrm.XY20070024.

    Article  Google Scholar 

  5. Cheng C, Liu Y, Ma R, Fan R. Nickel/yttrium iron garnet metacomposites with adjustable negative permittivity behavior toward electromagnetic shielding application. Compos Part A Appl Sci Manuf. 2022;155:106842. https://doi.org/10.1016/j.compositesa.2022.106842.

    Article  CAS  Google Scholar 

  6. Zhang Y, Liu Q, Shao X, Ma W, Feng Y. Progress in fabrication and application of graphene nanoribbons. Chin J Rare Met. 2021;45(9):1119. https://doi.org/10.13373/j.cnki.cjrm.XY20100009.

    Article  Google Scholar 

  7. Cheng C, Liu Y, Shi S, Ma R, Wang T, Zheng Q, Zhao Y, Yu X, Shen J, Fan R. Negative permittivity behavior in carbon fibre/silicon nitride ceramic composites prepared by spark plasma sintering. Ceram Int. 2021;47(24):35201. https://doi.org/10.1016/j.ceramint.2021.09.063.

    Article  CAS  Google Scholar 

  8. Cheng C, Jiang Y, Sun X, Shen J, Wang T, Fan G, Fan R. Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites. Compos Part A Appl Sci Manuf. 2020;130:105753. https://doi.org/10.1016/j.compositesa.2019.105753`.

    Article  CAS  Google Scholar 

  9. Sun K, Xie P, Wang Z, Su T, Shao Q, Ryu J, Zhang X, Guo J, Shankar A, Li J, Fan R, Cao D, Guo Z. Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer. 2017;125:50. https://doi.org/10.1016/j.polymer.2017.07.083.

    Article  CAS  Google Scholar 

  10. Wang Z, Sun K, Wu H, Xie P, Wang Z, Li X, Fan R. Compressible sliver nanowires/polyurethane sponge metacomposites with weakly negative permittivity controlled by elastic deformation. J Mater Sci. 2020;55(32):15481. https://doi.org/10.1007/s10853-020-05126-z.

    Article  CAS  Google Scholar 

  11. Sun K, Dong J, Wang Z, Wang Z, Fan G, Hou Q, An L, Dong M, Fan R, Guo Z. Tunable negative permittivity in flexible graphene/PDMS metacomposites. J Phys Chem C. 2019;123(38):23635. https://doi.org/10.1021/acs.jpcc.9b06753.

    Article  CAS  Google Scholar 

  12. Xie P, Sun W, Du A, Hou Q, Wu G, Fan R. Epsilon-negative carbon aerogels with state transition from dielectric to degenerate semiconductor. Adv Electron Mater. 2021;7(3):2000877. https://doi.org/10.1002/aelm.202000877.

    Article  CAS  Google Scholar 

  13. Zhou Y, Lian H, Li Z, Yin L, Ji Q, Li K, Qi F, Huang Y. Crack engineering boosts the performance of flexible sensors. View. 2022;3(5):20220025. https://doi.org/10.1002/VIW.20220025.

    Article  Google Scholar 

  14. Sun K, Duan W, Lei Y, Wang Z, Tian J, Yang P, He Q, Chen M, Wu H, Zhang Z. Flexible multi-walled carbon nanotubes/polyvinylidene fluoride membranous composites with weakly negative permittivity and low frequency dispersion. Compos Part A Appl Sci Manuf. 2022;156:106854. https://doi.org/10.1016/j.compositesa.2022.106854.

    Article  CAS  Google Scholar 

  15. Tu HL, Zhao HB, Fan YY, Zhang QZ. Recent developments in nonferrous metals and related materials for biomedical applications in China: a review. Rare Metals. 2022;41(5):1410. https://doi.org/10.1007/s12598-021-01905-y.

    Article  CAS  Google Scholar 

  16. Wan S, Wang H, Liu JH, Liao BK, Guo XP. Self-assembled monolayers for electrochemical migration protection of low-temperature sintered nano-Ag paste. Rare Met. 2022;41(4):1239. https://doi.org/10.1007/s12598-021-01866-2.

    Article  CAS  Google Scholar 

  17. Yang P, Sun K, Wu Y, Wu H, Yang X, Wu X, Du H, Fan R. Negative permittivity behaviors derived from dielectric resonance and plasma oscillation in percolative bismuth ferrite/silver composites. J Phys Chem C. 2022;126(30):12889. https://doi.org/10.1021/acs.jpcc.2c03543.

    Article  CAS  Google Scholar 

  18. Shi Y, Pan K, Moloney M, Qiu J. Strain sensing metacomposites of polyaniline/silver nanoparticles/carbon foam. Compos Part A Appl Sci Manuf. 2021;144:106351. https://doi.org/10.1016/j.compositesa.2021.106351.

    Article  CAS  Google Scholar 

  19. Lagarkov AN, Sarychev AK. Electromagnetic properties of composites containing elongated conducting inclusions. Phys Rev B. 1996;53:6318. https://doi.org/10.1103/PhysRevB.53.6318.

    Article  CAS  Google Scholar 

  20. Wu N, Du W, Hu Q, Jiang S. Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci. 2020. https://doi.org/10.30919/es8d1149.

    Article  Google Scholar 

  21. Ur Rehman S, Ahmed R, Ma K, Xu S, Tao T, Aslam M, Amir M, Wang J. Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci. 2020;13(2):71. https://doi.org/10.30919/es8d1263.

    Article  CAS  Google Scholar 

  22. Maas R, Parsons J, Engheta N, Polman A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat Photonics. 2013;7(11):907. https://doi.org/10.1038/nphoton.2013.256.

    Article  CAS  Google Scholar 

  23. Dyachenko P, Molesky S, Petrov A, Störmer M, Krekeler T, Lang S, Ritter M, Jacob Z, Eich M. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat Commun. 2016;7(1):1. https://doi.org/10.1038/ncomms11809.

    Article  Google Scholar 

  24. Yu P, Besteiro L, Huang Y, Wu J, Fu L, Tan H, Jagadish C, Wiederrecht G, Govorov A, Wang Z. Broadband metamaterial absorbers. Adv Opt Mater. 2019;7(3):1800995. https://doi.org/10.1002/adom.201800995.

    Article  CAS  Google Scholar 

  25. Chudnovsky E. Theory of spin hall effect: extension of the Drude model. Phys Rev Lett. 2007;99(20):206601. https://doi.org/10.1103/PhysRevLett.99.206601.

    Article  CAS  Google Scholar 

  26. Kakade A, Kulkarni S. Electrical conductivity and modulus studies of x[CNFO]-(1 − x)[0.5BCT-0.5BZT] multiferroic with dielectric, magnetic and magneto-dielectric properties. Eng Sci. 2021;18:168. https://doi.org/10.30919/es8d485.

    Article  CAS  Google Scholar 

  27. Sun J, Zhang X, Du Q, Murugadoss V, Wu D, Guo Z. The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater Manuf. 2021;13:53. https://doi.org/10.30919/esmm5f450.

    Article  CAS  Google Scholar 

  28. Qu Y, Wang Z, Xie P, Wang Z, Fan R. Ultraweakly and fine-tunable negative permittivity of polyaniline/nickel metacomposites with high-frequency diamagnetic response. Compos Sci Technol. 2022;217:109092. https://doi.org/10.1016/j.compscitech.2021.109092.

    Article  CAS  Google Scholar 

  29. Qu Y, Wu J, Wang Z, Liu Y, Xie P, Wang Z, Tian J, Fan R. Radio-frequency epsilon-negative property and diamagnetic response of percolative Ag/CCTO metacomposites. Scr Mater. 2021;203:114067. https://doi.org/10.1016/j.scriptamat.2021.114067.

    Article  CAS  Google Scholar 

  30. Sun K, Fan R, Yin Y, Guo J, Li X, Lei Y, An L, Cheng C, Guo Z. Tunable negative permittivity with Fano-like resonance and magnetic property in percolative silver/yittrium iron garnet nanocomposites. J Phys Chem C. 2017;121(13):7564. https://doi.org/10.1021/acs.jpcc.7b02036.

    Article  CAS  Google Scholar 

  31. Chui S, Hu L. Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites. Phys Rev B. 2002;65(14):144407. https://doi.org/10.1103/PhysRevB.65.144407.

    Article  CAS  Google Scholar 

  32. Tsutaoka T, Massango H, Kasagi T, Yamamoto S, Hatakeyama K. Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites. Appl Phys Lett. 2016;108(19):191904. https://doi.org/10.1063/1.4949560.

    Article  CAS  Google Scholar 

  33. Xie A, Mao S, Chen T, Yang H, Zhang M. Microstructure and properties of cerium oxide/polyurethane elastomer composites. Rare Met. 2021;40(12):3685. https://doi.org/10.1007/s12598-021-01714-3.

    Article  CAS  Google Scholar 

  34. Xu J, Shu Y, Xia Q, Guo Y, Zhou G, Zhan W. Pressure control as an effective method to modulate aggregative growth of nanoparticles. Rare Met. 2021;40(7):1808. https://doi.org/10.1007/s12598-020-01484-4.

    Article  CAS  Google Scholar 

  35. Jonscher AK. The ‘universal’dielectric response. Nature. 1977;267(5613):673. https://doi.org/10.1038/267673a0.

    Article  CAS  Google Scholar 

  36. Alam H, Ramakrishna S. A review on the enhancement of Fig of merit from bulk to nano-thermoelectric materials. Nano Energy. 2013;2(2):190. https://doi.org/10.1016/j.nanoen.2012.10.005.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51871146, 52271182 and 52105575), the Natural Science Foundation of Shanghai (No. 22ZR1426800), the Young Elite Scientist Sponsorship Program by China Association for Science and Technology (No. YESS20200257) and the Innovation Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-10-E00053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Kun Wu, Shan Jiang or Andrey Karlovich Sarychev.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, JH., Fan, RH., Yang, PT. et al. Flexible silver nanorods/carbon fiber felt metacomposites with epsilon-near-zero property adjusted by compressive deformation. Rare Met. 42, 3318–3325 (2023). https://doi.org/10.1007/s12598-023-02390-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02390-1

Navigation