Skip to main content
Log in

Damping capacity of Fe83Ga17 magnetostrictive alloy under magnetic field

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

本文研究了Fe83Ga17合金在静态磁场H中的阻尼性能。结果表明, 在磁场作用下, 阻尼峰值可以在0.020 ~ 0.085之间调节, 并在临界磁场 (Hcr = 0.2 mT) 处达到最大值。当H小于Hcr时, 磁畴发生畴壁可逆位移。磁场对磁畴运动起启动作用, 增强畴壁移动能力, 磁机械阻尼随着磁场的增加而增加。当H大于Hcr时, 磁畴开始发生不可逆壁移和畴转, 并逐渐占主导地位。磁场对磁畴运动起钉扎作用, 阻碍畴壁运动, 磁机械阻尼随着磁场的增加而减小, 直到无磁机械阻尼发生。磁化饱和后, Fe83Ga17合金的阻尼主要由位错提供, 验证了磁机械滞后和位错能量耗散的协同阻尼效应。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a
Fig. 2a
Fig. 3
Fig. 4
Fig. 5

References

  1. Gou JM, Ma TY, Qiao RH, Yang TZ, Liu F, Ren XB. Dynamic precipitation and the resultant magnetostriction enhancement in [001]-oriented Fe–Ga alloys. Acta Mater. 2021;206:116631. https://doi.org/10.1016/j.actamat.2021.116631.

    Article  CAS  Google Scholar 

  2. Zhang SX, Wu W, Zhu XX, Liu JH, Jiang CB. Microstructure and magnetostrictive properties of Tb doped Fe–Ga bulk alloys prepared by melt quenching. Rare Met. 2014;33(3):309. https://doi.org/10.1007/s12598-013-0183-1.

    Article  CAS  Google Scholar 

  3. Li JH, Gao XX, Zhu J, Bao XQ, Xia T, Zhang MC. Ductility, texture and large magnetostriction of Fe–Ga-based sheets. Scr Mater. 2010;63(2):246. https://doi.org/10.1016/j.scriptamat.2010.03.068.

    Article  CAS  Google Scholar 

  4. Yuan C, Gao XX, Li JH, Bao XQ. Secondary recrystallization of Goss texture in magnetostrictive Fe–Ga-based sheets. Rare Met. 2020;39(11):1288. https://doi.org/10.1007/s12598-014-0284-5.

    Article  CAS  Google Scholar 

  5. Atulasimha J, Flatau AB. A review of magnetostrictive iron–gallium alloys. Smart Mater Struct. 2011;20(4):043001. https://doi.org/10.1088/0964-1726/20/4/043001.

    Article  CAS  Google Scholar 

  6. Sun M, Li L, Liu CX, Liu XQ, Jiang WB, Lei YW, Gao YX, Cheng ZJ, Wang XP, Sheng ZG, Wu XB, Fang QF, Liu CS. Ultra-high anisotropic magneto-mechanical damping in Fe–18at.%Ga single crystals. Scr Mater. 2022;212:114552. https://doi.org/10.1016/j.scriptamat.2022.114552.

    Article  CAS  Google Scholar 

  7. Deng ZX, Dapino MJ. Review of magnetostrictive materials for structural vibration control. Smart Mater Struct. 2018;27(11):113001. https://doi.org/10.1088/1361-665X/aadff5.

    Article  Google Scholar 

  8. Bajkowski JM, Dyniewicz B, Bajer CI. Semi-active damping strategy for beams system with pneumatically controlled granular structure. Mech Syst Signal Process. 2016;70:387. https://doi.org/10.1016/j.ymssp.2015.09.026.

    Article  Google Scholar 

  9. Xu Z, Chen ZH, Huang XH, Zhou CY, Hu ZW, Yang QH, Gai PP. Recent advances in multi-dimensional vibration mitigation materials and devices. Front Mater. 2019;6:143. https://doi.org/10.3389/fmats.2019.00143.

    Article  Google Scholar 

  10. Smith GW, Birchak JR. Internal stress distribution theory of magnetomechanical hysteresis-an extension to include effects of magnetic field and applied stress. J Appl Phys. 1969;40(13):5174. https://doi.org/10.1063/1.1657370.

    Article  Google Scholar 

  11. Li L, Gao YX, Sun M, Jing K, Zhuang Z, Wang XP, Jiang WB, Fang QF. Effect of phase composition on the internal friction and magnetostriction in the L12/D03 biphase Fe-27Ga alloys. J Alloy Compd. 2022;895:162661. https://doi.org/10.1016/j.jallcom.2021.162661.

    Article  CAS  Google Scholar 

  12. Emdadi AA, Cifre J, Dementeva OY, Golovin IS. Effect of heat treatment on ordering and functional properties of the Fe–19Ga alloy. J Alloy Compd. 2015;619:58. https://doi.org/10.1016/j.jallcom.2014.08.231.

    Article  CAS  Google Scholar 

  13. Golovin IS, Palacheva VV, Zadorozhnyy VY, Zhu J, Jiang H, Cifre J, Lograsso TA. Influence of composition and heat treatment on damping and magnetostrictive properties of Fe–18%(Ga + Al) alloys. Acta Mater. 2014;78:93. https://doi.org/10.1016/j.actamat.2014.05.044.

    Article  CAS  Google Scholar 

  14. Ishimoto M, Numakura H, Wuttig M. Magnetoelastic damping in Fe–Ga solid-solution alloys. Mater Sci Eng A. 2006;442(1–2):195. https://doi.org/10.1016/j.msea.2006.02.215.

    Article  CAS  Google Scholar 

  15. Smith GW, Birchak JR. Effect of internal stress distribution on magnetomechanical damping. J Appl Phys. 1968;39(5):2311. https://doi.org/10.1063/1.1656551.

    Article  CAS  Google Scholar 

  16. Niblett DH, Wilks J. Dislocation damping in metals. Adv Phys. 1960;9(33):1–88. https://doi.org/10.1080/00018736000101159.

    Article  CAS  Google Scholar 

  17. Granato AV, Lücke K. Theory of mechanical damping due to dislocations. J Appl Phys. 1956;27(6):583. https://doi.org/10.1063/1.1722436.

    Article  Google Scholar 

  18. Granato AV, Lücke K. Application of dislocation theory to internal friction phenomena at high frequencies. J Appl Phys. 1956;27(7):789. https://doi.org/10.1063/1.1722485.

    Article  Google Scholar 

  19. Nishiyama K, Matsui R, Ikeda Y, Niwa S, Sakaguchi T. Damping properties of a sintered Mg–Cu–Mn alloy. J Alloy Compd. 2003;355(1–2):22. https://doi.org/10.1016/S0925-8388(03)00256-1.

    Article  CAS  Google Scholar 

  20. Wan DQ, Wang JC, Wang GF, Chen XY, Lin L, Feng ZG, Yang GC. Effect of Mn on damping capacities, mechanical properties, and corrosion behavior of high damping Mg–3 wt.% Ni based alloy. Mater Sci Eng A. 2008;494(1–2):139. https://doi.org/10.1016/j.msea.2008.04.011.

    Article  CAS  Google Scholar 

  21. Wan DQ, Wang JC, Yang GC. A study of the effect of Y on the mechanical properties, damping properties of high damping Mg–0.6% Zr based alloys. Mater Sci Eng A. 2009;517(1–2):114. https://doi.org/10.1016/j.msea.2009.03.059.

    Article  CAS  Google Scholar 

  22. Mu X, Qi Y, Yan SW, Liu YQ, Cheng C, Xu LH, Zhang HP. Phase structures and magnetostriction of Fe71.3Ga28.7 alloys prepared by different solidification rates. Funct Mater Lett. 2021;14(08):2150028. https://doi.org/10.1142/S1793604721500284.

    Article  CAS  Google Scholar 

  23. Liu LB, Fu SY, Liu GD, Wu GH, Sun XD, Li JQ. Transmission electron microscopy study on the microstructure of Fe85Ga15 alloy. Physica B. 2005;365(1–4):102. https://doi.org/10.1016/j.physb.2005.05.002.

    Article  CAS  Google Scholar 

  24. Qiao RH, Gou JM, Yang TZ, Zhang YQ, Liu F, Hu SS, Ma TY. Enhanced damping capacity of ferromagnetic Fe–Ga alloys by introducing structural defects. J Mater Sci Technol. 2021;84:173. https://doi.org/10.1016/j.jmst.2020.12.061.

    Article  CAS  Google Scholar 

  25. Golovin IS. Internal friction and modulus defect in α-Fe-based, high-alloyed (Cr, Mo) hidamets. J Alloy Compd. 1994;211:147. https://doi.org/10.1016/0925-8388(94)90469-3.

    Article  Google Scholar 

  26. He YK, Coey JMD, Schaefer R, Jiang CB. Determination of bulk domain structure and magnetization processes in bcc ferromagnetic alloys: analysis of magnetostriction in Fe83Ga17. Phys Rev Mater. 2018;2(1):014412. https://doi.org/10.1103/PhysRevMaterials.2.014412.

    Article  CAS  Google Scholar 

  27. Ding ZY, Gao JJ, Jiao ZB, Wu HH, Chen AY, Zhu J. Strain-magnetization property of Ni-Mn-Ga (Co, Cu) microwires. Rare Met. 2023;42(1):244. https://doi.org/10.1007/s12598-022-02071-5.

  28. Wun-Fogle M, Restorff JB, Clark AE. Magnetostriction of stress-annealed Fe–Ga and Fe–Ga–Al alloys under compressive and tensile stress. J Intel Mat Syst Str. 2006;17(2):117. https://doi.org/10.1177/1045389X06056060.

    Article  CAS  Google Scholar 

  29. Olabi AG, Grunwald A. Design and application of magnetostrictive materials. Mater Des. 2008;29(2):469. https://doi.org/10.1016/j.matdes.2006.12.016.

    Article  CAS  Google Scholar 

  30. Globus A, Duplex P. Initial susceptibility of ferrimagnetic materials and topography of domain walls. Phys Status Solidi B. 1969;31(2):765. https://doi.org/10.1002/pssb.19690310236.

    Article  CAS  Google Scholar 

  31. Globus A, Guyot M. Wall displacement and bulging in magnetization mechanisms of the hysteresis loop. Phys Status Solidi B. 1972;52(2):427. https://doi.org/10.1002/pssb.2220520211.

    Article  CAS  Google Scholar 

  32. Globus A, Duplex P. Separation of susceptibility mechanisms for ferrites of low anisotropy. IEEE Trans Magn. 1966;2(3):441. https://doi.org/10.1109/TMAG.1966.1065867.

    Article  Google Scholar 

  33. Jiles DC, Atherton DL. Theory of ferromagnetic hysteresis. J Magn Magn Mater. 1986;61(1–2):48. https://doi.org/10.1016/0304-8853(86)90066-1.

    Article  Google Scholar 

  34. Jiles DC, Ostenson JE, Owen CV, Chang TT. Barkhausen effect and discontinuous magnetostriction in Terfenol-D. J Appl Phys. 1988;64(10):5417. https://doi.org/10.1063/1.342356.

    Article  CAS  Google Scholar 

  35. Degauque J, Astie B. Influence of the different kinds of magnetic fields on the magnetomechanical damping of high-purity iron. Phys Status Solidi B. 2010;59(2):805. https://doi.org/10.1002/pssa.2210590248.

    Article  Google Scholar 

  36. Schwarz A, Liebmann M, Kaiser U, Wiesendanger R. Visualization of the Barkhausen effect by magnetic force microscopy. Phys Rev Mater. 2004;92(7):077206. https://doi.org/10.1103/PhysRevLett.92.077206.

    Article  CAS  Google Scholar 

  37. Astie B, Degauque J. Magnetoelastic damping of iron in the presence of synchronous alternating magnetic field. Nuovo Cim B. 1976;33:414. https://doi.org/10.1007/BF02722510.

    Article  Google Scholar 

  38. Golovin IS, Cifre J. Structural mechanisms of anelasticity in Fe–Ga-based alloys. J Alloy Compd. 2014;584:322. https://doi.org/10.1016/j.jallcom.2013.09.077.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2021YFB3501403).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Mu or Hong-Ping Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, SW., Mu, X., Liu, BJ. et al. Damping capacity of Fe83Ga17 magnetostrictive alloy under magnetic field. Rare Met. 43, 402–409 (2024). https://doi.org/10.1007/s12598-023-02382-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02382-1

Navigation