Skip to main content
Log in

Low-pressure-induced large barocaloric effect in MnAs0.94Sb0.06 alloy around room temperature

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

压热制冷由于其环保以及高效等优点被认为是很有可能替代传统气体压缩制冷的制冷方式。然而,目前所发现的大部分压热制冷材料的驱动压力都很大,不利于实际应用。在这篇文章中,我们报道了一级磁结构相变合金MnAs0.94Sb0.06在低压力下诱导的压热效应。MnAs0.94Sb0.06合金的相变温度对压力非常敏感,其压力系数dTc/dP在降温时为134 K·GPa-1,在升温时为126 K·GPa-1。在40 MPa的微小压力下,MnAs0.94Sb0.06合金的压热熵变可以达到26.3 J·kg-1·K-1,绝热温变可以达到14.4 K,表现出了非常优异的压热性能。我们对于MnAs0.94Sb0.06合金压热效应的研究表明该系列合金是压热制冷非常有潜力的候选材料。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Chen X, Ni C, Zhao MH. Magnetic Phase Transition and Magnetocaloric Effect of Tb3NiSi2 Alloy. Chin J of Rare Met. 2021;45(2):169. https://doi.org/10.13373/j.cnki.cjrm.xy19060032.

  2. Zhang HY, Zhang ZY, Xu YF, Xia AL, Li WH, Wang FC, Chen SS, Siso G. Microstructure and magnetocaloric properties of partially crystallized Gd60Co30Fe10 amorphous alloy prepared by different solidification cooling rates. Rare Met. 2022;41(1):246. https://doi.org/10.1007/s12598-021-01745-w.

    Article  CAS  Google Scholar 

  3. Zheng D, Jing C, Lu B, Li Z, Xu K. Martensitic transformation, magnetocaloric effect and phase transition strain in Ni50Mn36-xGexSn14 Heusler alloys. Rare Met. 2022;41(12):4217. https://doi.org/10.1007/s12598-016-0820-6.

    Article  CAS  Google Scholar 

  4. Kumar A, Thakre A, Jeong DY, Ryu J. Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics. J Mater Chem C. 2019;7(23):6836. https://doi.org/10.1039/C9TC01525F.

    Article  CAS  Google Scholar 

  5. Imran M, Zhang X. Recent developments on the cyclic stability in elastocaloric materials. Mater Design. 2020;195(1):109030. https://doi.org/10.1016/j.matdes.2020.109030.

    Article  CAS  Google Scholar 

  6. Mañosa L, Planes A. Materials with giant mechanocaloric effects: cooling by strength. Adv Mater. 2017;29(11):1603607. https://doi.org/10.1002/adma.201603607.

    Article  CAS  Google Scholar 

  7. Cirillo L, Greco A, Masselli C. Cooling through barocaloric effect: a review of the state of the art up to 2022. Therm Sci Eng Prog. 2022;33(1):101380. https://doi.org/10.1016/j.tsep.2022.101380.

    Article  Google Scholar 

  8. Kitanovski A. Energy applications of magnetocaloric materials. Adv Energy Mater. 2020;10(10):1903741. https://doi.org/10.1002/aenm.201903741.

    Article  CAS  Google Scholar 

  9. Shi J, Han D, Li Z, Yang L, Lu SG, Zhong Z, Chen J, Zhang Q, Qian X. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule. 2019;3(5):1200–25. https://doi.org/10.1016/j.joule.2019.03.021.

    Article  Google Scholar 

  10. Cong D, Xiong W, Planes A, Ren Y, Mañosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys. Phys Rev Lett. 2019;122(25):5703. https://doi.org/10.1103/PhysRevLett.122.255703.

    Article  Google Scholar 

  11. Lloveras P, Stern-Taulats E, Barrio M, Tamarit JL, Crossley S, Li W, Pomjakushin V, Planes A, Mañosa L, Mathur ND, Moya X. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat Commun. 2015;6(1):8801. https://doi.org/10.1038/ncomms9801.

    Article  CAS  Google Scholar 

  12. Gorev MV, Mikhaleva EA, Flerov IN, Bogdanov EV. Conventional and inverse barocaloric effects in ferroelectric NH4HSO4. J Alloy Compd. 2019;806(25):1047. https://doi.org/10.1016/j.jallcom.2019.07.273.

    Article  CAS  Google Scholar 

  13. Flerov IN, Gorev MV, Tressaud A, Laptash NM. Perovskite-like fluorides and oxyfluorides: phase transitions and caloric effects. Crystallogr Rep. 2011;56(1):9. https://doi.org/10.1134/S106377451101010X.

    Article  CAS  Google Scholar 

  14. Flerov IN, Kartashev AV, Gorev MV, Bogdanov EV, Melnikova SV, Molokeev MS, Pogoreltsev EI, Laptash NM. Thermal, structural, optical, dielectric and barocaloric properties at ferroelastic phase transition in trigonal (NH4)2SnF6: a new look at the old compound. J Fluorine Chem. 2016;183(1):1. https://doi.org/10.1016/j.jfluchem.2015.12.010.

    Article  CAS  Google Scholar 

  15. Aznar A, Lloveras P, Romanini M, Barrio M, Tamarit JL, Cazorla C, Errandonea D, Mathur ND, Planes A, Moya X, Mañosa L. Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nat Commun. 2017;8(1):1851. https://doi.org/10.1038/s41467-017-01898-2.

    Article  CAS  Google Scholar 

  16. Sagotra AK, Chu D, Cazorla C. Room-temperature mechanocaloric effects in lithium-based superionic materials. Nat Commun. 2018;9(1):3337. https://doi.org/10.1038/s41467-018-05835-9.

    Article  CAS  Google Scholar 

  17. Bermúdez-García JM, Sánchez-Andújar M, Castro-García S, López-Beceiro J, Artiaga R, Señarís-Rodríguez MA. Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nat Commun. 2017;8(1):15715. https://doi.org/10.1038/ncomms15715.

    Article  CAS  Google Scholar 

  18. Bermúdez-García JM, Yáñez-Vilar S, García-Fernández A, Sánchez-Andújar M, Castro-García S, López-Beceiro J, Artiaga R, Dilshad M, Moya X, Señarís-Rodríguez MA. Giant barocaloric tunability in [(CH3CH2CH2)4N]Cd[N(CN)2]3 hybrid perovskite. J Mater Chem C. 2018;6(37):9867. https://doi.org/10.1039/C7TC03136J.

    Article  Google Scholar 

  19. Matsunami D, Fujita A, Takenaka K, Kano M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat Mater. 2015;14(1):73. https://doi.org/10.1038/nmat4117.

    Article  CAS  Google Scholar 

  20. Boldrin D, Mendive-Tapia E, Zemen J, Staunton JB, Hansen T, Aznar A, Tamarit JL, Barrio M, Lloveras P, Kim J, Moya X, Cohen LF. Multisite exchange-enhanced barocaloric response in Mn3NiN. Phys Rev X. 2018;8(4):1035. https://doi.org/10.1038/srep18027.

    Article  CAS  Google Scholar 

  21. Bom N, Imamura W, Usuda E, Paixao L, Carvalho A. Giant barocaloric effects in natural rubber: a relevant step toward solid-state cooling. ACS Macro Lett. 2018;7(1):31. https://doi.org/10.1021/acsmacrolett.7b00744.

    Article  CAS  Google Scholar 

  22. Usuda E, Imamura W, Bom N, Paixão L, Carvalho A. Giant reversible barocaloric effects in nitrile butadiene rubber around room temperature. ACS Appl Polym Mater. 2019;1(8):1991. https://doi.org/10.1021/acsapm.9b00235.

    Article  CAS  Google Scholar 

  23. von Ranke P, Alho B, Ribeiro P. First indirect experimental evidence and theoretical discussion of giant refrigeration capacity through the reversible pressure induced spin-crossover phase transition. J Alloy Compd. 2018;749(1):556. https://doi.org/10.1016/j.jallcom.2018.03.315.

    Article  CAS  Google Scholar 

  24. von Ranke PJ, Alho BP, da Silva PHS, Ribas RM, Nobrega EP, de Sousa VSR, Colaço MV, Marques LF, Reis MS, Scaldini FM, Escobar LBL, Ribeiro PO. Large barocaloric effect in spin-crossover complex [CrI2(depe)2]. J Appl Phys. 2020;127(16):165104. https://doi.org/10.1063/5.0003644.

    Article  CAS  Google Scholar 

  25. Romanini M, Wang Y, Gürpinar K, Ornelas G, Lloveras P, Zhang Y, Zheng W, Barrio M, Aznar A, Gràcia-Condal A. Giant and reversible barocaloric effect in trinuclear spin-crossover complex Fe3(bntrz)6(tcnset)6. Adv Mater. 2021;33(10):2008076. https://doi.org/10.1002/adma.202008076.

    Article  CAS  Google Scholar 

  26. Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J, Chen Y, Kawaguchi SI, Kawaguchi S, Ohara K, Li K, Yu D, Mole R, Hattori T, Kikuchi T, Si Y, Zhang Z, Zhang Z, Ren W, Lin S, Sakata O, Nakajima K, Zhang Z. Colossal barocaloric effects in plastic crystals. Nature. 2019;567(7749):506. https://doi.org/10.1038/s41586-019-1042-5.

    Article  CAS  Google Scholar 

  27. Lloveras P, Aznar A, Barrio M, Negrier P, Popescu C, Planes A, Mañosa L, Stern-Taulats E, Avramenko A, Mathur ND, Moya X, Tamarit JL. Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol. Nat Commun. 2019;10(1):1803. https://doi.org/10.1038/s41467-019-09730-9.

    Article  CAS  Google Scholar 

  28. Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat Mater. 2010;9(6):478. https://doi.org/10.1038/nmat2731.

    Article  CAS  Google Scholar 

  29. Gębara P. Magnetocaloric effect of LaFe11.35Co0.6Si1.05 alloy. Rare Met. 2022;41(5):1563. https://doi.org/10.1007/s12598-017-0917-6.

    Article  CAS  Google Scholar 

  30. Yuce S, Barrio M, Emre B, Stern-Taulats E, Planes A, Tamarit JL, Mudryk Y, Ka G, Pecharsky VK, Mañosa L. Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Appl Phys Lett. 2012;101(7):1906. https://doi.org/10.1063/1.4745920.

    Article  CAS  Google Scholar 

  31. Aznar A, Gràcia-Condal A, Planes A, Lloveras P, Barrio M, Tamarit JL, Xiong W, Cong D, Popescu C, Mañosa L. Giant barocaloric effect in all-d-metal Heusler shape memory alloys. Phys Rev Mater. 2019;3(4):4406. https://doi.org/10.1103/PhysRevMaterials.3.044406.

    Article  Google Scholar 

  32. Liu K, Zeng H, Qi J, Luo X, Zhao X, Zheng X, Yuan Y, Chen C, Ma S, Xie R, Li B, Zhong Z. Microstructure and giant baro-caloric effect induced by low pressure in Heusler Co51Fe1V33Ga15 alloy undergoing martensitic transformation. J Mater Sci Technol. 2021;73(20):76. https://doi.org/10.1016/j.jmst.2020.09.022.

    Article  CAS  Google Scholar 

  33. Stern-Taulats E, Gràcia-Condal A, Planes A, Lloveras P, Barrio M, Tamarit JL, Pramanick S, Majumdar S, Mañosa L. Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51. Appl Phys Lett. 2015;107(15):2409. https://doi.org/10.1063/1.4933409.

    Article  CAS  Google Scholar 

  34. Wei Z, Shen Y, Zhang Z, Guo J, Li B, Liu E, Zhang Z, Liu J. Low-pressure-induced giant barocaloric effect in an all-d-metal Heusler Ni35.5Co14.5Mn35Ti15 magnetic shape memory alloy. APL Mater. 2020;8(5):1101. https://doi.org/10.1063/5.0005021.

    Article  CAS  Google Scholar 

  35. Wu RR, Bao LF, Hu FX, Wu H, Huang QZ, Wang J, Dong XL, Li GN, Sun JR, Shen FR, Zhao TY, Zheng XQ, Wang LC, Liu Y, Zuo WL, Zhao YY, Zhang M, Wang XC, Jin CQ, Rao GH, Han XF, Shen BG. Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature. Sci Rep. 2015;5(1):18027. https://doi.org/10.1038/srep18027.

    Article  CAS  Google Scholar 

  36. Wada H, Tanabe Y. Giant magnetocaloric effect of MnAs1−xSbx. Appl Phys Lett. 2001;79(20):3302. https://doi.org/10.1063/1.1419048.

    Article  CAS  Google Scholar 

  37. Gama S, Coelho AA, de Campos A, Carvalho AMG, Gandra FC, von Ranke PJ, de Oliveira NA. Pressure-induced colossal magnetocaloric effect in MnAs. Phys Rev Lett. 2004;93(23):7202. https://doi.org/10.1103/PhysRevLett.93.237202.

    Article  CAS  Google Scholar 

  38. von Ranke PJ, Gama S, Coelho AA, de Campos A, Carvalho AMG, Gandra FCG, de Oliveira NA. Theoretical description of the colossal entropic magnetocaloric effect: application to MnAs. Phys Rev B. 2006;73(1):4415. https://doi.org/10.1103/PhysRevB.73.014415.

    Article  CAS  Google Scholar 

  39. Wada H, Matsuo S, Mitsuda A. Pressure dependence of magnetic entropy change and magnetic transition in MnAs1-xSbx. Phys Rev B. 2009;79(9):2407. https://doi.org/10.1103/PhysRevB.79.092407.

    Article  CAS  Google Scholar 

  40. de Medeiros JL, De Oliveira N, Troper A. Giant magnetocaloric and barocaloric effects in Mn (As1-xSbx). J Alloy Compd. 2010;501(2):177. https://doi.org/10.1016/j.jallcom.2010.03.244.

    Article  CAS  Google Scholar 

  41. Pecharsky VK, Gschneidner JKA. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett. 1997;78(23):4494. https://doi.org/10.1103/PhysRevLett.78.4494.

    Article  CAS  Google Scholar 

  42. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O. Giant magnetocaloric effect driven by structural transitions. Nat Mater. 2012;11(7):620. https://doi.org/10.1038/nmat3334.

    Article  CAS  Google Scholar 

  43. Hu P, Gong J, Zhang Z, Zhang C, Wang H, Cheng P, Wang D. Magnetic field-dependent lattice entropy change in Gd5Ge4. J Magn Magn Mater. 2023;566(1):170306. https://doi.org/10.1016/j.jmmm.2022.170306.

    Article  CAS  Google Scholar 

  44. Jia L, Liu G, Sun J, Zhang H, Hu F, Dong C, Rao G, Shen B. Entropy changes associated with the first-order magnetic transition in LaFe13−xSix. J Appl Phys. 2006;100(12):3904. https://doi.org/10.1063/1.2404468.

    Article  CAS  Google Scholar 

  45. Lażewski J, Piekarz P, Tobola J, Wiendlocha B, Jochym PT, Sternik M, Parlinski K. Phonon mechanism of the magnetostructural phase transition in MnAs. Phys Rev Lett. 2010;104(14):7205. https://doi.org/10.1103/PhysRevLett.104.147205.

    Article  CAS  Google Scholar 

  46. Von Ranke P, De Oliveira N, Gama S. Theoretical investigations on giant magnetocaloric effect in MnAs1−xSbx. Phys Lett A. 2004;320(4):302. https://doi.org/10.1016/j.physleta.2003.10.067.

    Article  CAS  Google Scholar 

  47. Alho B, de Oliveira N, de Sousa V, Gama S, Coelho A, Carvalho AMG, Von Ranke P. Theoretical investigation on the magnetocaloric effect in MnAs using a microscopic model to describe the ma gnetic and thermal hysteresis. Solid state commun. 2012;152(11):951. https://doi.org/10.1016/j.ssc.2012.03.028.

    Article  CAS  Google Scholar 

  48. Zou JD, Wada H, Shen BG, Sun JR, Li W. Giant magnetocaloric effect and soft-mode magneto-structural phase transition in MnAs. EPL. 2008;81(4):47002. https://doi.org/10.1209/0295-5075/81/47002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U22A20117) and the National Natural Science Foundation of China (No. 52271175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dun-Hui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, PT., Zhang, Z., Kan, XC. et al. Low-pressure-induced large barocaloric effect in MnAs0.94Sb0.06 alloy around room temperature. Rare Met. 42, 3977–3984 (2023). https://doi.org/10.1007/s12598-023-02374-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02374-1

Navigation