Skip to main content
Log in

Unveiling H2O2-optimized NOx adsorption-selective catalytic reduction (AdSCR) performance of WO3/CeZrO2 catalyst

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Recently, NOx emissions in the cold-start period have been a great challenge in eliminating diesel vehicle exhaust. In this study, a type of NOx adsorption-selective catalytic reduction (AdSCR) bifunctional catalyst was developed to remove NOx in the cold-start period by constructing additional NOx adsorption sites on the surface of the selective catalytic reduction of NOx with NH3 catalyst. The AdSCR catalyst exhibited both NOx adsorption–storage performance and NH3-SCR activity. The amount of oxygen vacancies directly affected the adsorption performance of NOx on the catalyst surface. In this study, H2O2 with different pH values was employed to adjust the electronic structure of the CeZrO2 support and construct oxygen vacancies on the surface of CeZrO2, which contributed to improving NOx adsorption and storage on the WO3/CeZrO2 (W/CZ) catalyst below 200 °C. The catalytic performance results show that CZ supports modified by alkaline H2O2 rather than acidic and neutral H2O2 significantly improve the NOx adsorption capacity without decreasing the NH3-SCR activity. The characterization results show that the CZ support modified by alkaline H2O2 possesses more surface oxygen vacancies and chemisorbed oxygen than CZ supports modified by acidic and neutral H2O2. Oxygen vacancies are not only the active sites of NH3-SCR, but also the active sites of NOx adsorption. Therefore, the W/CZ catalyst modified by alkaline H2O2 exhibited an excellent AdSCR performance. This study proposes a novel perspective to address the issue of NOx emissions from diesel vehicles during the cold start period.

Graphical Abstract

摘要

近年来, 减少冷启动阶段的NOx排放是柴油车尾气面临的一大挑战。本研究开发了一种NOx吸附-选择性催化还原 (AdSCR) 双功能催化剂, 通过在NH3选择性催化还原NOx(NH3-SCR) 催化剂的表面上构建额外的NOx吸附位点, 从而在冷启动阶段去除NOx。AdSCR催化剂同时具有NOx吸附-储存性能和NH3-SCR活性。氧空位的数量直接影响NOx在催化剂表面上的吸附-储存性能。该工作采用不同pH值的H2O2调节CeZrO2 (CZ) 载体的电子结构, 并在CeZrO2表面上构建氧空位, 这有助于改善WO3/CeZrO2催化剂在低于200 °C时的NOx吸附-储存性能。催化性能的结果表明, 与酸性和中性H2O2改性的CZ载体相比, 碱性H2O2改性的CZ载体在不降低NH3-SCR活性的基础上显著提高了NOx吸附能力。表征结果表明, 与酸性和中性H2O2改性的CZ载体相比, 碱性H2O2改性的CZ载体具有更多的表面氧空位和化学吸附氧。氧空位不仅是NH3-SCR的活性位点, 也是NOx吸附的活性位点。因此, 碱性H2O2改性的W/CZ催化剂显示出优异的AdSCR性能。该工作为解决柴油车在冷启动阶段NOx排放问题提出了一个新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ximinis J, Massaguer A, Pujol T, Massaguer E. NOx emissions reduction analysis in a diesel Euro VI heavy duty vehicle using a thermoelectric generator and an exhaust heater. Fuel. 2021;301:121029. https://doi.org/10.1016/j.fuel.2021.121029.

    Article  CAS  Google Scholar 

  2. Zhao H, Hill AJ, Ma L, Bhat A, Jing G, Schwank JW. Progress and future challenges in passive NO adsorption over Pd/zeolite catalysts. Catal Sci Technol. 2021;11(18):5986. https://doi.org/10.1039/d1cy01084k.

    Article  CAS  Google Scholar 

  3. Cole JA. System for reducing NOx from mobile source engine exhaust. US Patent 5656244. 1997.

  4. Haneda M, Morita T, Nagao Y, Kintaichi Y, Hamada H. CeO2-ZrO2 binary oxides for NOx removal by sorption. PCCP. 2001;3(21):4696. https://doi.org/10.1039/b106074k.

    Article  CAS  Google Scholar 

  5. Jones S, Ji Y, Crocker M. Ceria-based catalysts for low temperature NOx storage and release. Catal Lett. 2016;146(5):909. https://doi.org/10.1007/s10562-016-1704-y.

    Article  CAS  Google Scholar 

  6. Theis JR. An assessment of Pt and Pd model catalysts for low temperature NO adsorption. Catal Today. 2016;267:93. https://doi.org/10.1016/j.cattod.2016.01.032.

    Article  CAS  Google Scholar 

  7. Ji Y, Xu D, Crocker M, Theis JR, Lambert C, Bueno-Lopez A, Harris D, Scapens D. Mn-based mixed oxides for low temperature NOx adsorber applications. Appl Catal A. 2018;567:90. https://doi.org/10.1016/j.apcata.2018.09.006.

    Article  CAS  Google Scholar 

  8. Chen HY, Mulla S, Weigert E, Camm K, Ballinger T, Cox J, Blakeman P. Cold start concept (CSC™): a novel catalyst for cold start emission control. SAE Int J Fuels Lubr. 2013;6(2):372. https://doi.org/10.4271/2013-01-0535.

    Article  CAS  Google Scholar 

  9. Naseri M, Conway R, Hess H, Aydin C, Chatterjee S. Development of emission control systems to enable high NOx conversion on heavy duty diesel engines. SAE Tech Pap. 2014. https://doi.org/10.4271/2014-01-15250.

    Article  Google Scholar 

  10. Murata Y, Morita T, Wada K, Ohno H. NOx trap three-way catalyst (N-TWC) concept: TWC with NOx adsorption properties at low temperatures for cold-start emission control. SAE Int J Fuls Lubr. 2015;8(2):454. https://doi.org/10.4271/2015-01-1002.

    Article  CAS  Google Scholar 

  11. Tamm S, Andonova S, Olsson L. Silver as storage compound for NOx at low temperatures. Catal Lett. 2014;144(4):674. https://doi.org/10.1007/s10562-014-1211-y.

    Article  CAS  Google Scholar 

  12. Ren S, Schmieg SJ, Koch CK, Qi G, Li W. Investigation of Ag-based low temperature NO adsorbers. Catal Today. 2015;258:378. https://doi.org/10.1016/j.cattod.2015.02.008.

    Article  CAS  Google Scholar 

  13. Ji Y, Bai S, Xu D, Qian D, Wu Z, Song Y, Pace R, Crocker M, Wilson K, Lee A, Harris D, Scapens D. Pd-promoted WO3-ZrO2 for low temperature NOx storage. Appl Catal B. 2020;264:118499. https://doi.org/10.1016/j.apcatb.2019.118499.

    Article  CAS  Google Scholar 

  14. Gonze E, Paratore MJ, Bedford JC. NOx adsorber regeneration system and method. US Patent 20120117947. 2012.

  15. Selleri T, Gramigni F, Nova I, Tronconi E, Dieterich S, Weibel M, Schmeisser VA. A PGM-free NOx adsorber + selective catalytic reduction catalyst system (AdSCR) for trapping and reducing NOx in lean exhaust streams at low temperature. Catal Sci Technol. 2018;8(9):2467. https://doi.org/10.1039/c8cy00343b.

    Article  CAS  Google Scholar 

  16. Gramigni F, Nasello ND, Selleri T, Nova I, Tronconi E, Dieterich S, Weibel M. Unexpected low-temperature deNOx activity of AdSCR systems for cold start NOx abatement. Emiss Control Sci Technol. 2020;6(4):402. https://doi.org/10.1007/s40825-020-00174-y.

    Article  CAS  Google Scholar 

  17. Gramigni F, Selleri T, Nova I, Tronconi E, Dieterich S, Weibel M, Schmeisser V. Analysis of AdSCR systems for NOx removal during the cold-start period of diesel engines. Top Catal. 2019;62(1–4):3. https://doi.org/10.1007/s11244-019-01138-5.

    Article  CAS  Google Scholar 

  18. Nasello ND, Gramigni F, Nova I, Tronconi E. AdSCR systems (adsorption + selective catalytic reduction): analysis of the influence of H2O and CO2 on low temperature NOx emission reduction performances. Emiss Control Sci Technol. 2021;7(4):223. https://doi.org/10.1007/s40825-021-00204-3.

    Article  CAS  Google Scholar 

  19. Gramigni F, Selleri T, Nova I, Tronconi E. Catalyst systems for selective catalytic reduction + NOx trapping: from fundamental understanding of the standard SCR reaction to practical applications for lean exhaust after-treatment. React Chem Eng. 2019;4(7):1165. https://doi.org/10.1039/c9re00012g.

    Article  CAS  Google Scholar 

  20. Azzoni ME, Franchi FS, Usberti N, Nasello ND, Castoldi L, Nova I, Tronconi E. Dual-layer AdSCR monolith catalysts: a new solution for NOx emissions control in cold start applications. Appl Catal B. 2022;315:121544. https://doi.org/10.1016/j.apcatb.2022.121544.

    Article  CAS  Google Scholar 

  21. Xu H, Liu J, Zhang Z, Liu S, Lin Q, Wang Y, Dai S, Chen Y. Design and synthesis of highly-dispersed WO3 catalyst with highly effective NH3–SCR activity for NOx abatement. ACS Catal. 2019;9(12):11557. https://doi.org/10.1021/acscatal.9b03503.

    Article  CAS  Google Scholar 

  22. Liu S, Yao P, Lin Q, Xu S, Pei M, Wang J, Xu H, Chen Y. Optimizing acid promoters of Ce-based NH3-SCR catalysts for reducing NOx emissions. Catal Today. 2021;382:34. https://doi.org/10.1016/j.cattod.2021.05.007.

    Article  CAS  Google Scholar 

  23. Liu S, Lin Q, Liu J, Xu S, Wang Y, Xu H, Wang J, Chen Y. Enhancement of the hydrothermal stability of WO3/Ce0.68Zr0.32O2 catalyst by silica modification for NH3-SCR. ACS Appl Energy Mater. 2019;3(1):1161. https://doi.org/10.1021/acsaem.9b02227.

    Article  CAS  Google Scholar 

  24. Liu S, Yao P, Pei M, Lin Q, Xu S, Wang J, Xu H, Chen Y. Significant differences of NH3-SCR performances between monoclinic and hexagonal WO3 on Ce-based catalysts. Environ Sci Nano. 2021;8(10):2988. https://doi.org/10.1039/d1en00519g.

    Article  CAS  Google Scholar 

  25. Li G, Shen K, Wang L, Zhang Y, Yang H, Wu P, Wang B, Zhang S. Synergistic degradation mechanism of chlorobenzene and NO over the multi-active center catalyst: the role of NO2, Brønsted acidic site, oxygen vacancy. Appl Catal B. 2021;286:119865. https://doi.org/10.1016/j.apcatb.2020.119865.

    Article  CAS  Google Scholar 

  26. Kim M, Park G, Lee H. Local structure and redox properties of amorphous CeO2-TiO2 prepared using the H2O2-modified sol-gel method. Nanomaterials (Basel). 2021. https://doi.org/10.3390/nano11082148.

    Article  Google Scholar 

  27. Wei X, Li X, Feng Y, Yang S. Morphology- and pH-dependent peroxidase mimetic activity of nanoceria. RSC Adv. 2018. https://doi.org/10.1039/c8ra00622a.

    Article  Google Scholar 

  28. Xu H, Liu S, Wang Y, Lin Q, Lin C, Lan L, Wang Q, Chen Y. Promotional effect of Al2O3 on WO3/CeO2-ZrO2 monolithic catalyst for selective catalytic reduction of nitrogen oxides with ammonia after hydrothermal aging treatment. Appl Surfe Sci. 2018;427:656. https://doi.org/10.1016/j.apsusc.2017.08.166.

    Article  CAS  Google Scholar 

  29. You R, Zhang Y, Liu D, Meng M, Zheng L, Zhang J, Hu T. YCeZrO ternary oxide solid solution supported nonplatinic lean-burn NOx trap catalysts using LaCoO3 perovskite as active phase. J Phys Chem C. 2014;118(44):25403. https://doi.org/10.1021/jp505601x.

    Article  CAS  Google Scholar 

  30. Ji Y, Xu D, Bai S, Graham U, Crocker M, Chen B, Shi C, Harris D, Scapens D, Darab J. Pt- and Pd-promoted CeO2–ZrO2 for passive NOx adsorber applications. Ind Eng Chem Res. 2016;56(1):111. https://doi.org/10.1021/acs.iecr.6b03793.

    Article  CAS  Google Scholar 

  31. Li Z, Meng M, Zha Y, Dai F, Hu T, Xie Y, Zhang J. Highly efficient multifunctional dually-substituted perovskite catalysts La1−xKxCo1−yCuyO3−δ used for soot combustion, NOx storage and simultaneous NOx-soot removal. Appl Catal B. 2012;121–122:65. https://doi.org/10.1016/j.apcatb.2012.03.022.

    Article  CAS  Google Scholar 

  32. Ren D, Wang C, Guo L, Wang B, Yang D, Zhao Y. NOx storage capacity of Pt/BaCO3/Al2O3 catalysts with Mn and Ce modification. Chin J Rare Met. 2021;45(8):961. https://doi.org/10.13373/j.cnki.cjrm.XY19080030.

    Article  Google Scholar 

  33. Scholz C, Maes B, Croon M, Schouten J. Influence of reducing agent (CO, H2, and C2H4) and of H2O on NOx reduction on a Pt-Ba/γ-Al2O3 catalyst. Appl Catal A. 2007;332(1):1. https://doi.org/10.1016/j.apcata.2007.04.023.

    Article  CAS  Google Scholar 

  34. Cao L, Li Z, He L, Shen B, Zhu L, Wu Y. Influence of CO2 concentration and inlet temperature on adsorption path of lean NOx Trap. Energy Procedia. 2019. https://doi.org/10.1016/j.egypro.2019.01.780.

    Article  Google Scholar 

  35. Khatri P, Bhatia D. Effect of H2, H2O, and CO2 on the deNOx characteristics of a combined passive NOx adsorber and NOx reduction catalyst. AlChE J. 2022. https://doi.org/10.1002/aic.17675.

    Article  Google Scholar 

  36. Yin M, Zhao D, Yang Y, Xing L, Ren W, Gao Z, Cheng Q, Ding T, Tian Y, Li X. Efficient Pt/Ba/SnxCe1–xO2 catalysts for high-temperature lean NOx traps with high H2O and CO2 tolerance. Ind Eng Chem Res. 2019;58(20):8690. https://doi.org/10.1021/acs.iecr.9b01661.

    Article  CAS  Google Scholar 

  37. Deng J, Zhou Y, Cui Y, Lan L, Wang J, Yuan S, Chen Y. The influence of H2O2 on the properties of CeO2-ZrO2 mixed oxides. J Mater Sci. 2017;52(9):5242. https://doi.org/10.1007/s10853-017-0765-7.

    Article  CAS  Google Scholar 

  38. Xu H, Lin Q, Wang Y, Lan L, Liu S, Lin C, Wang Q, Wang J, Chen Y. Promotional effect of niobium substitution on the low-temperature activity of a WO3/CeZrOx monolithic catalyst for the selective catalytic reduction of NOx with NH3. RSC Adv. 2017;7(75):47570. https://doi.org/10.1039/c7ra08429c.

    Article  CAS  Google Scholar 

  39. Chen J, Zhao W, Wu Q, Mi J, Wang X, Ma L, Jiang L, Au C, Li J. Effects of anaerobic SO2 treatment on nano-CeO2 of different morphologies for selective catalytic reduction of NOx with NH3. Chem Eng J. 2020;382:122910. https://doi.org/10.1016/j.cej.2019.122910.

    Article  CAS  Google Scholar 

  40. Boningari T, Somogyvari A, Smirniotis PG. Ce-based catalysts for the selective catalytic reduction of NOx in the presence of excess oxygen and simulated diesel engine exhaust conditions. Ind Eng Chem Res. 2017;56(19):5483. https://doi.org/10.1021/acs.iecr.7b00045.

    Article  CAS  Google Scholar 

  41. Wang D, Yin FX, Cheng B, Xia Y, Yu JG, Ho WK. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Met. 2021;40(9):2369. https://doi.org/10.1007/s12598-021-01731-2.

    Article  CAS  Google Scholar 

  42. Chen L, Wang Q, Wang X, Cong Q, Ma H, Guo T, Li S, Li W. High-performance CeO2/halloysite hierarchical catalysts with promotional redox property and acidity for the selective catalytic reduction of NO with NH3. Chem Eng J. 2020;390:124251. https://doi.org/10.1016/j.cej.2020.124251.

    Article  CAS  Google Scholar 

  43. Ke Y, Huang W, Li S, Liao Y, Li J, Qu Z, Yan N. Surface acidity enhancement of CeO2 catalysts via modification with a heteropoly acid for the selective catalytic reduction of NO with ammonia. Catal Sci Technol. 2019;9(20):5774. https://doi.org/10.1039/c9cy01346f.

    Article  CAS  Google Scholar 

  44. Priya NS, Somayaji C, Kanagaraj S. Synthesis and characterization of Nd3+-doped Ce0.6Zr0.4O2 and its doping significance on oxygen storage capacity. Rare Met. 2021;40(1):231. https://doi.org/10.1007/s12598-016-0698-3.

    Article  CAS  Google Scholar 

  45. Zhang B, Zhang S, Liu B. Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3. Appl Surf Sci. 2020;529:147068. https://doi.org/10.1016/j.apsusc.2020.147068.

    Article  CAS  Google Scholar 

  46. Zhu W, Tang X, Gao F, Yi H, Zhang R, Wang J, Yang C, Ni S. The effect of non-selective oxidation on the Mn2Co1Ox catalysts for NH3-SCR: positive and non-positive. Chem Eng J. 2020;385:123797. https://doi.org/10.1016/j.cej.2019.123797.

    Article  CAS  Google Scholar 

  47. Liu Z, Chen C, Zhao J, Yang L, Sun K, Zeng L, Pan Y, Liu Y, Liu C. Study on the NO2 production pathways and the role of NO2 in fast selective catalytic reduction DeNOx at low-temperature over MnOx/TiO2 catalyst. Chem Eng J. 2020;379:122288. https://doi.org/10.1016/j.cej.2019.122288.

    Article  CAS  Google Scholar 

  48. Lee J, Theis JR, Kyriakidou EA. Vehicle emissions trapping materials: successes, challenges, and the path forward. Appl Catal B. 2019;243:397. https://doi.org/10.1016/j.apcatb.2018.10.069.

    Article  CAS  Google Scholar 

  49. Wang B, Wang M, Han L, Hou Y, Bao W, Zhang C, Feng G, Chang L, Huang Z, Wang J. Improved activity and SO2 resistance by Sm-modulated redox of MnCeSmTiOx mesoporous amorphous oxides for low-temperature NH3-SCR of NO. ACS Catal. 2020;10(16):9034. https://doi.org/10.1021/acscatal.0c02567.

    Article  CAS  Google Scholar 

  50. Filtschew A, Hess C. Unravelling the mechanism of NO and NO2 storage in ceria: the role of defects and Ce-O surface sites. Appl Catal B. 2018;248(2):258. https://doi.org/10.1016/j.apcatb.2018.06.058.

    Article  CAS  Google Scholar 

  51. Wang G, Zhang J, Zhou J, Qian G. Production of an effective catalyst with increased oxygen vacancies from manganese slag for selective catalytic reduction of nitric oxide. J Environ Manage. 2019. https://doi.org/10.1016/j.jenvman.2019.03.056.

    Article  Google Scholar 

  52. Zhao M, Shen M, Wang J. Effect of surface area and bulk structure on oxygen storage capacity of Ce0.67Zr0.33O2. J Catal. 2007;248(2):258. https://doi.org/10.1016/j.jcat.2007.03.005.

    Article  CAS  Google Scholar 

  53. Shan W, Liu F, He H, Shi X, Zhang C. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chem Commun. 2011. https://doi.org/10.1039/c1cc12168e.

    Article  Google Scholar 

  54. Liu C, Chen L, Chang H, Ma L, Peng Y, Arandiyan H, Li J. Characterization of CeO2–WO3 catalysts prepared by different methods for selective catalytic reduction of NO with NH3. Catal Commun. 2013;40:145. https://doi.org/10.1016/j.catcom.2013.06.017.

    Article  CAS  Google Scholar 

  55. Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE. Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal Rev. 2004;46(2):163. https://doi.org/10.1081/cr-200031932.

    Article  Google Scholar 

  56. Kabin KS, Khanna P, Muncrief RL, Medhekar V, Harold MP. Monolith and TAP reactor studies of NOx storage on Pt/BaO/Al2O3: elucidating the mechanistic pathways and roles of Pt. Catal Today. 2006;114(1):72. https://doi.org/10.1016/j.cattod.2006.02.004.

    Article  CAS  Google Scholar 

  57. Dong F, Suda A, Tanabe T, Nagai Y, Sobukawa H, Shinjoh H, Sugiura M, Descorme C, Duprez D. Dynamic oxygen mobility and a new insight into the role of Zr atoms in three-way catalysts of Pt/CeO2–ZrO2. Catal Today. 2004;93–95:827. https://doi.org/10.1016/j.cattod.2004.06.076.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 22072098) and Sichuan Science and Technology Program (No. 2022ZHCG0125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Di Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2568 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Liu, S., Pei, MM. et al. Unveiling H2O2-optimized NOx adsorption-selective catalytic reduction (AdSCR) performance of WO3/CeZrO2 catalyst. Rare Met. 42, 3755–3765 (2023). https://doi.org/10.1007/s12598-023-02369-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02369-y

Keywords

Navigation