Skip to main content
Log in

Constructing Ni4W/WO3/NF with strongly coupled interface for hydrogen evolution in alkaline media

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

The pursuit of storing renewable electricity in chemical bonds has encouraged the effort toward developing efficient electrocatalysts for alkaline hydrogen production. However, the additional step of water dissociation under alkaline conditions frequently limits the performance of electrocatalysts in alkaline media. Herein, we synthesize Ni4W/WO3 with a strongly coupled interface on the Ni foam (NF) by phase transition of NiWO4, to enhance the activity for alkaline hydrogen production. It is discovered that the strong binding hydroxyl on WO3 sites facilitates the dissociation of water, which in turn promotes hydrogen evolution through the synergy effect of strong adsorption of H on Ni sites. The adsorption/desorption energy of Ni sites is further tuned by the formation of intermetallic Ni4W. Owing to the three-dimensional structure and tailored composition, the Ni4W/WO3/NF electrocatalyst exhibits a low overpotential of 31 mV at a current density of 10 mA·cm−2, with a Tafel slope of 38 mV·dec−1. This work provides new opportunities to modulate the catalytic performance of Ni-based electrocatalysts by signifying the metal-oxide interface.

Graphical abstract

摘要

将间歇性可持续能源电力转换为化学能的关键是发展高效电催化剂材料,特别是碱性电解质中的析氢催化剂。然而,碱性条件下缓慢的水 解离初始步骤限制了电催化剂的HER 性能。本文在泡沫镍(NF)表面生长NiWO4,并通过原位转变制备具有强耦合界面的Ni4W/WO3 催化剂,提升碱性析氢催化活性。利用WO3 对羟基的强结合和Ni 位点对H 具有强吸附,协同促进对HER 起关键作用的水分子解离步骤。 金属间化合物Ni4W 的形成进一步调制了Ni 位点的吸附/脱附性能。由于Ni4W/WO3/NF 特殊的三维规整结构和界面协同效应,在 31 mV 的过电位下即可产生10 mA·cm−2 的碱性HER 电流密度,其Tafel 斜率为38 mV·dec−1。本项工作揭示了金属-氧化物界面在协同型催化反 应中的重要性,并为镍基电催化剂材料的理性设计提供新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Fan L, Xia C, Yang FQ, Wang J, Wang HT, Lu YY. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020;6:3111. https://doi.org/10.1126/sciadv.aay3111.

    Article  CAS  Google Scholar 

  2. Martín AJ, Pérez-Ramírez J. Heading to distributed electrocatalytic conversion of small abundant molecules into fuels, chemicals, and fertilizers. Joule. 2019;3(11):2602. https://doi.org/10.1016/j.joule.2019.09.007.

    Article  CAS  Google Scholar 

  3. Schiffer ZJ, Manthiram K. Electrification and decarbonization of the chemical industry. Joule. 2017;1(1):10. https://doi.org/10.1016/j.joule.2017.07.008.

    Article  Google Scholar 

  4. Zeradjanin AR, Narangoda P, Masa J, Schlögl R. What controls activity trends of electrocatalytic hydrogen evolution reaction?—Activation energy versus frequency factor. ACS Catal. 2022;12(19):11597. https://doi.org/10.1021/acscatal.2c02964.

    Article  CAS  Google Scholar 

  5. Dinh CT, Jain A, De Arquer FPG, De Luna P, Li J, Wang N, Zheng XL, Cai J, Gregory BZ, Voznyy O, Zhang B, Liu M, Sinton D, Crumlin EJ, Sargent EH. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat Energy. 2019;4(2):107. https://doi.org/10.1038/s41560-018-0296-8.

    Article  CAS  Google Scholar 

  6. Yu Y, Wang D, Hong YM, Zhang T, Liu CW, Chen J, Qin GW, Li S. Bulk-immiscible CuAg alloy nanorods prepared by phase transition from oxides for electrochemical CO2 reduction. Chem Commun. 2022;58(79):11163. https://doi.org/10.1039/d2cc04789f.

    Article  CAS  Google Scholar 

  7. Liu CW, Tian A, Li QY, Wang TY, Qin GW, Li S, Sun CH. 2D, metal-free electrocatalysts for the nitrogen reduction reaction. Adv Funct Mater. 2023;33:2210759. https://doi.org/10.1002/adfm.202210759.

    Article  CAS  Google Scholar 

  8. Anantharaj S, Noda S, Jothi VR, Yi SC, Driess M, Menezes PW. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew Chem Int Ed. 2021;60(35):18981. https://doi.org/10.1002/anie.202015738.

    Article  CAS  Google Scholar 

  9. Sun R, Huang X, Zhou QY, Li MJ, Jiang JB, Li YL, Xu WX, Cong HS, Han S. Unique three-dimensional heterostructure of MoS2@Co-MOF decorated with Co-Al layered double hydroxide: an effective synergistic alkaline hydrogen evolution electrocatalyst. Electrochim Acta. 2022;430:141072. https://doi.org/10.1016/j.electacta.2022.141072.

    Article  CAS  Google Scholar 

  10. Shen Y, Zhou YF, Wang D, Wu X, Li J, Xi JY. Nickel-copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Adv Energy Mater. 2018;8(2):1701759. https://doi.org/10.1002/aenm.201701759.

    Article  CAS  Google Scholar 

  11. Lai JP, Huang BL, Chao YG, Chen X, Guo SJ. Strongly coupled nickel-cobalt nitrides/carbon hybrid nanocages with Pt-like activity for hydrogen evolution catalysis. Adv Mater. 2019;31(2):1805541. https://doi.org/10.1002/adma.201805541.

    Article  CAS  Google Scholar 

  12. Sajjad S, Wang C, Deng CW, Ji F, Ali T, Shezad B, Ji HQ, Yan CL. Unravelling critical role of metal cation engineering in boosting hydrogen evolution reaction activity of molybdenum diselenide. Rare Met. 2022;41(6):1851. https://doi.org/10.1007/s12598-021-01948-1.

  13. Zhu J, Hu LS, Zhao PX, Lee LYS, Wong KY. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev. 2020;120(2):851. https://doi.org/10.1021/acs.chemrev.9b00248.

    Article  CAS  Google Scholar 

  14. Bernardini M, Comisso N, Davolio G, Mengoli G. Formation of nickel hydrides by hydrogen evolution in alkaline media. J Electroanal Chem. 1998;442:125. https://doi.org/10.1016/S0022-0728(97)00492-0.

    Article  CAS  Google Scholar 

  15. Huo LX, Jin CQ, Jiang K, Bao QY, Hu ZG, Chu JH. Applications of nickel-based electrocatalysts for hydrogen evolution reaction. Adv Energy Sustain Res. 2022;3(4):2100189. https://doi.org/10.1002/aesr.202100189.

    Article  CAS  Google Scholar 

  16. Yuan FH, Mohammadi MR, Ma LL, Cui ZD, Zhu SL, Li ZY, Wu SL, Jiang H, Liang YQ. Electrodeposition of self-supported NiMo amorphous coating as an efficient and stable catalyst for hydrogen evolution reaction. Rare Met. 2022;41(8):2624. https://doi.org/10.1007/s12598-022-01967-6.

    Article  CAS  Google Scholar 

  17. Hui B, Li J, Lu Y, Zhang KW, Chen HJ, Yang DJ, Cai LP, Huang ZH. Boosting electrocatalytic hydrogen generation by a renewable porous wood membrane decorated with Fe-doped NiP alloys. J Energy Chem. 2021;56:23. https://doi.org/10.1016/j.jechem.2020.07.037.

    Article  CAS  Google Scholar 

  18. Cao JM, Zhou J, Li MX, Chen JY, Zhang YF, Liu XW. Insightful understanding of three-phase interface behaviors in 1T–2H MoS2/CFP electrode for hydrogen evolution improvement. Chin Chem Lett. 2022;33:3745. https://doi.org/10.1016/j.cclet.2021.11.007.

    Article  CAS  Google Scholar 

  19. Rakov D, Sun CY, Lu Z, Li SW, Xu P. NiSe@Ni1-xFexSe2 core–shell nanostructures as a bifunctional water splitting electrocatalyst in alkaline media. Adv Energy Sus Res. 2021;2(11):210007. https://doi.org/10.1002/aesr.202100071.

    Article  CAS  Google Scholar 

  20. Shang L, Zhao YX, Kong XY, Shi R, Waterhouse GIN, Wen LP, Zhang TR. Underwater superaerophobic Ni nanoparticle-decorated nickel–molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energ. 2020;78:105375. https://doi.org/10.1016/j.nanoen.2020.105375.

    Article  CAS  Google Scholar 

  21. Chen JX, Long QW, Xiao K, Ouyang T, Li N, Ye SY, Liu ZQ. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Science Bulletin. 2021;66(11):1063. https://doi.org/10.1016/j.scib.2021.02.033.

    Article  CAS  Google Scholar 

  22. Wu T, Pang X, Zhao SW, Xu SM, Liu ZQ, Li YS, Huang FQ. One-step construction of ordered sulfur-terminated tantalum carbide MXene for efficient overall water splitting. Small Struct. 2022;3:2100206. https://doi.org/10.1002/sstr.202100206.

    Article  CAS  Google Scholar 

  23. Danilovic N, Subbaraman R, Strmcnik D, Chang KC, Paulikas AP, Stamenkovic VR, Markovic NM. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew Chem Int Ed. 2012;51:12495. https://doi.org/10.1002/ange.201204842.

    Article  CAS  Google Scholar 

  24. Liu Y, Liu XH, Wang XS, Ning H, Yang TH, Yu JM, Kumar A, Luo YG, Wang HD, Wang LL, Lee JS, Jadhav AR, Hu H, Wu MB, Kim MG, Lee H. Unraveling the synergy of chemical hydroxylation and the physical heterointerface upon improving the hydrogen evolution kinetics. ACS Nano. 2021;15(9):15017. https://doi.org/10.1021/acsnano.1c05324.

    Article  CAS  Google Scholar 

  25. Lu K, Liu YZ, Lin F, Cordova IA, Gao SY, Li BM, Peng B, Xu HP, Kaelin J, Coliz D, Wang C, Shao YY, Cheng YW. LixNiO/Ni heterostructure with strong basic lattice oxygen enables electrocatalytic hydrogen evolution with Pt-like activity. J Am Chem Soc. 2020;142(29):12613. https://doi.org/10.1021/jacs.0c00241.

    Article  CAS  Google Scholar 

  26. Liu YL, Chen H, Xu CJ, Sun YM, Li S, Jiang M, Qin GW. Control of catalytic activity of nano-Au through tailoring the Fermi level of support. Small. 2019;15(34):1901789. https://doi.org/10.1002/smll.201901789.

    Article  CAS  Google Scholar 

  27. Yuan FH, Mohammadi M, Ma LL, Cui ZD, Zhu SL, Li ZY, Wu SL, Jiang H & Liang YQ. Electrodeposition of self-supported NiMo amorphous coating as an efficient and stable catalyst for hydrogen evolution reaction. Rare Met. 2022;41(8):2624. https://doi.org/10.1007/s12598-022-01967-6.

  28. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169–83. https://doi.org/10.1007/s12598-021-01914-x.

    Article  CAS  Google Scholar 

  29. Zhang RB, Tu ZA, Meng S, Feng G, Lu ZH, Yu YZ, Reina TR, Hu FY, Chen XH, Ye RP. Engineering morphologies of yttrium oxide supported nickel catalysts for hydrogen production. Rare Met. 2023;42(1):176. https://doi.org/10.1007/s12598-022-02136-5.

    Article  CAS  Google Scholar 

  30. Xu CJ, Zhang Y, Chen J, Li S, Zhang YW, Qin G. Carbon-CeO2 interface confinement enhances the chemical stability of Pt nanocatalyst for catalytic oxidation reactions. Sci China Mater. 2021;64:128. https://doi.org/10.1007/s40843-020-1360-8.

    Article  CAS  Google Scholar 

  31. Niu LY, Li ZP, Xu Y, Sun JF, Hong W, Liu XH, Wang JQ, Yang SR. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl Mater Interfaces. 2013;5(16):8044. https://doi.org/10.1021/am402127u.

    Article  CAS  Google Scholar 

  32. Ji YY, Yang L, Ren X, Cui GW, Xiong XL, Sun XP. Full water splitting electrocatalyzed by NiWO4 nanowire array. ACS Sustain Chem Eng. 2018;6(8):9555. https://doi.org/10.1021/acssuschemeng.8b01841.

    Article  CAS  Google Scholar 

  33. Cao XQ, Zhou J, Li S, Qin GW. Ultra-stable metal nano catalyst synthesis strategy: a perspective. Rare Met. 2020;39(2):113. https://doi.org/10.1007/s12598-019-01350-y.

    Article  CAS  Google Scholar 

  34. Bond AM, Elton D, Guo SX, Kennedy GF, Mashkina E, Simonov AN, Zhang J. An integrated instrumental and theoretical approach to quantitative electrode kinetic studies based on large amplitude Fourier transformed a.c. voltammetry: a mini review. Electrochem Commun. 2015;57:78. https://doi.org/10.1016/j.elecom.2015.04.017.

    Article  CAS  Google Scholar 

  35. Kibsgaard J, Jaramillo TF. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed. 2014;53(52):14433. https://doi.org/10.1002/anie.201408222.

    Article  CAS  Google Scholar 

  36. Wu HA, Kong LQ, Ji YJ, Yan JQ, Ding YM, Li YY, Lee ST, Liu SZ. Double-site Ni–W nanosheet for best alkaline HER performance at high current density >500 mA·cm−2. Adv Mater Interfaces. 2019;6(10):1900308. https://doi.org/10.1002/admi.201900308.

    Article  CAS  Google Scholar 

  37. Mollamahale YB, Jafari N, Hosseini D. Electrodeposited Ni-W nanoparticles: enhanced catalytic activity toward hydrogen evolution reaction in acidic media. Mater Lett. 2018;213:15. https://doi.org/10.1016/j.matlet.2017.11.003.

    Article  CAS  Google Scholar 

  38. Kim H, Park H, Kim DK, Oh SH, Choi I, Kim SK. Electrochemically fabricated NiW on a Cu nanowire as a highly porous non-precious-metal cathode catalyst for a proton exchange membrane water electrolyzer. ACS Sustain Chem Eng. 2019;7(9):8265. https://doi.org/10.1021/acssuschemeng.8b06643.

    Article  CAS  Google Scholar 

  39. Navarro-Flores E, Chong ZW, Omanovic S. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J Mol Catal A Chem. 2005;226(2):179. https://doi.org/10.1016/j.molcata.2004.10.029.

    Article  CAS  Google Scholar 

  40. Anis SF, Lalia BS, Mostafa AO, Hashaikeh R. Electrospun nickel–tungsten oxide composite fibers as active electrocatalysts for hydrogen evolution reaction. J Mater Sci. 2017;52(12):7269. https://doi.org/10.1007/s10853-017-0964-2.

    Article  CAS  Google Scholar 

  41. Hong SH, Ahn SH, Choi J, Kim JY, Kim HY, Kim HJ, Jang JH, Kim H, Kim SK. High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis. Appl Surf Sci. 2015;349:629. https://doi.org/10.1016/j.apsusc.2015.05.040.

    Article  CAS  Google Scholar 

  42. Han C, Wang DW, Li Q, Xing ZC, Yang XR. Ni17W3 nanoparticles decorated WO2 nanohybrid electrocatalyst for highly efficient hydrogen evolution reaction. ACS Appl Energy Mater. 2019;2(4):2409. https://doi.org/10.1021/acsaem.9b00170.

    Article  CAS  Google Scholar 

  43. Zhao YM, Mao GX, Du YS, Cheng GZ, Luo W. Colloidal synthesis of NiWSe nanosheets for efficient electrocatalytic hydrogen evolution reaction in alkaline media. Chem-An Asian J. 2018;13(16):2040. https://doi.org/10.1002/asia.201800692.

    Article  CAS  Google Scholar 

  44. Li YK, Zhang G, Huang H, Lu WT, Cao FF, Shao ZG. Ni17W3-W Interconnected hybrid prepared by atmosphere- and thermal-induced phase separation for efficient electrocatalysis of alkaline hydrogen evolution. Small. 2020;16(48):2005184. https://doi.org/10.1002/smll.202005184.

    Article  CAS  Google Scholar 

  45. Nsanzimana JMV, Peng Y, Miao M, Reddu V, Zhang WY, Wang HM, Xia BY, Wang X. An earth-abundant tungsten–nickel alloy electrocatalyst for superior hydrogen evolution. ACS Appl Nano Mater. 2018;1(3):1228. https://doi.org/10.1021/acsanm.7b00383.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the China BaoWu Low Carbon Metallurgical Innovation Foundation (No. BWLCF202113) and the Fundamental Research Funds for the Central Universities (Nos. N2202012 and N2124007-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Ethics declarations

Conflict of interests

Gao-Wu Qin is an editorial board member for Rare Metals and was not involved in the editorial review or the decision to publish this article. All authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1992 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Yu, YH., Liu, CW. et al. Constructing Ni4W/WO3/NF with strongly coupled interface for hydrogen evolution in alkaline media. Rare Met. 42, 3945–3951 (2023). https://doi.org/10.1007/s12598-023-02362-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02362-5

Navigation