Skip to main content
Log in

Observation of ballistic-diffusive thermal transport in GaN transistors using thermoreflectance thermal imaging

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

To develop effective thermal management strategies for gallium-nitride (GaN) transistors, it is essential to accurately predict the device junction temperature. Since the width of the heat generation in the devices is comparable to phonon mean free paths (MFPs) of GaN, phonon ballistic transport exists and can significantly affect the heat transport process, which necessitates a thorough understanding of the influence of the phonon ballistic effects in GaN transistors. In this study, the ballistic-diffusive phonon transport in GaN-on-SiC devices is examined by measuring the hotspot temperature using the thermoreflectance thermal imaging (TTI) combined with the hybrid phonon Monte Carlo-diffusion simulations. A series of Au heaters are fabricated on the top of the GaN layer to quantitatively mimic the different heat source distributions during device operation. The experimental and simulation results show a good consistency and both indicate that the phonon ballistic effects can significantly increase the hotspot temperature. With the size of the heat source decreasing, the errors of Fourier’s law-based predictions increase, which emphasizes the necessity to carefully consider the phonon ballistic transport in device thermal simulations.

Graphical abstract

摘要

准确地预测电子器件结温对发展氮化镓 (GaN) 晶体管的热管理策略至关重要。由于器件中的热源尺寸与GaN的声子平均自由程 (MFP) 相当, 因此存在声子弹道输运现象, 并会显著影响热传输过程, 迫切需要深入了解声子弹道效应的影响。本文使用反射热成像 (TTI) 实验结合声子蒙特卡罗-傅里叶定律耦合模拟来研究热点温度和GaN-SiC器件中的弹道-扩散热输运。在GaN层顶部制备了一组Au加热线, 以定量地模拟器件运行时的不同热源分布。实验和模拟结果显示出良好的一致性, 都表明声子弹道效应会显著增大热点温度; 随着热源尺寸的减小, 基于傅里叶定律的预测偏差增加。研究结果表明了在电子器件热模拟中考虑声子弹道传输的必要性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Parker M. A gallium nitride HEMT that enhances. Nat Electron. 2021;4(12):858. https://doi.org/10.1038/s41928-021-00698-3.

    Article  Google Scholar 

  2. Lei C, Chen T, Yan B, Xiao XM. Reaction characteristics and kinetics of gallium in chlorination roasting of copper tailings using calcium chloride. Rare Met. 2022;41(3):1063. https://doi.org/10.1007/s12598-015-0499-0.

  3. Guggenheim R, Rodes L. Roadmap review for cooling high-power GaN HEMT devices. In: 2017 IEEE international conference on microwaves, antennas, communications and electronic systems (COMCAS). Tel-Aviv; 2017. https://doi.org/10.1109/COMCAS.2017.8244734.

  4. Liu JS, Li Y, Wang SW, Chen SF, Song HW, Zhang SH. Formation mechanism of local pits on surface of flattened sintered heat pipes. Chin J of Rare Met. 2022,46(5):597. https://doi.org/10.13373/j.cnki.cjrm.XY21020002.

  5. Wang SW, Song HW, Chen Y, Zhang SH, Hu KY, Zhu Y. Micro-mechanism and influencing factors of orange peel defects on bended surface of sintered pure copper heat pipe. Chin J of Rare Met. 2022,46(1):1. https://doi.org/10.13373/j.cnki.cjrm.XY20010023.

  6. Sohel Murshed SM, Nieto-De-Castro CA. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew Sustain Energy Rev. 2017;78:821. https://doi.org/10.1016/j.rser.2017.04.112.

    Article  CAS  Google Scholar 

  7. Zhang Y, Liu S. The optimization model of the heat conduction structure. Prog Nat Sci. 2008;18(6):665. https://doi.org/10.1016/j.pnsc.2008.01.010.

    Article  CAS  Google Scholar 

  8. Garimella SV, Persoons T, Weibel JA, Gektin V. Electronics thermal management in information and communications technologies: challenges and future directions. IEEE Trans Compon Packag Manuf Technol. 2017;7(8):1191. https://doi.org/10.1109/TCPMT.2016.2603600.

    Article  Google Scholar 

  9. Fletcher ASA, Nirmal D. A survey of gallium nitride HEMT for RF and high power applications. Superlattices Microstruct. 2017;109:519. https://doi.org/10.1016/j.spmi.2017.05.042.

    Article  CAS  Google Scholar 

  10. Sridharan S, Venkatachalam A, Yoder PD. Electrothermal analysis of AlGaN/GaN high electron mobility transistors. J Comput Electron. 2008;7(3):236. https://doi.org/10.1007/s10825-008-0210-x.

    Article  CAS  Google Scholar 

  11. Donmezer N, Graham S. The impact of noncontinuum thermal transport on the temperature of AlGaN/GaN HFETs. IEEE Trans Electron Devices. 2014;61(6):2041. https://doi.org/10.1109/TED.2014.2318672.

    Article  CAS  Google Scholar 

  12. Ma J, Wang X, Huang B, Luo X. Effects of point defects and dislocations on spectral phonon transport properties of wurtzite GaN. J Appl Phys. 2013;114(7):074311. https://doi.org/10.1063/1.4817083.

    Article  CAS  Google Scholar 

  13. Chen G. Ballistic-diffusive heat-conduction equations. Phys Rev Lett. 2001;86(11):2297. https://doi.org/10.1103/PhysRevLett.86.2297.

    Article  CAS  Google Scholar 

  14. Chen D, Jiang F, Fang L, Zhu YB, Ye CC, Liu WS. Machine learning assisted discovering of new M2X3-type thermoelectric materials. Rare Met. 2022;41(5):1543. https://doi.org/10.1007/s12598-021-01911-0.

  15. Chen G. Non-Fourier phonon heat conduction at the microscale and nanoscale. Nat Rev Phys. 2021;3:555. https://doi.org/10.1038/s42254-021-00334-1.

    Article  CAS  Google Scholar 

  16. Cahill DG. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev Sci Instrum. 2004;75(12):5119. https://doi.org/10.1063/1.1819431.

    Article  CAS  Google Scholar 

  17. Johnson JA, Maznev AA, Bulsara MT, Fitzgerald EA, Harman TC, Calawa S, Vineis CJ, Turner G, Nelson KA. Phase-controlled, heterodyne laser-induced transient grating measurements of thermal transport properties in opaque material. J Appl Phys. 2012;111(2):023503. https://doi.org/10.1063/1.3675467.

    Article  CAS  Google Scholar 

  18. Frazer TD, Knobloch JL, Hoogeboom-Pot KM, Nardi D, Chao W, Falcone RW, Murnane MM, Kapteyn HC, Hernandez-Charpak JN. Engineering nanoscale thermal transport: size- and spacing-dependent cooling of nanostructures. Phys Rev Appl. 2019;11(2):024042. https://doi.org/10.1103/PhysRevApplied.11.024042.

    Article  CAS  Google Scholar 

  19. Ziabari A, Torres P, Vermeersch B, Xuan Y, Cartoixà X, Torelló A, Bahk J, Koh YR, Parsa M, Ye PD, Alvarez FX, Shakouri A. Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices. Nat Commun. 2018;9(1):255. https://doi.org/10.1038/s41467-017-02652-4.

    Article  CAS  Google Scholar 

  20. Farzaneh M, Maize K, Lüerßen D, Summers JA, Mayer PM, Raad PE, Pipe KP, Shakouri A, Ram RJ, Hudgings JA. CCD-based thermoreflectance microscopy: principles and applications. J Phys D Appl Phys. 2009;42(14):143001. https://doi.org/10.1088/0022-3727/42/14/143001.

    Article  CAS  Google Scholar 

  21. Hanus R, Rangnekar SV, Mollah S, Hussain K, Hines N, Heller E, Hersam MC, Khan A, Graham S. Thermoreflectance imaging of (ultra)wide band-gap devices with MoS2 enhancement coatings. ACS Appl Mater Interfaces. 2021;13(35):42195. https://doi.org/10.1021/acsami.1c11528.

    Article  CAS  Google Scholar 

  22. Pavlidis G, Yates L, Kendig D, Lo C, Marchand H, Barabadi B, Graham S. Thermal performance of GaN/Si HEMTs using near-bandgap thermoreflectance imaging. IEEE Trans Electron Devices. 2020;67(3):822. https://doi.org/10.1109/TED.2020.2964408.

    Article  CAS  Google Scholar 

  23. Chatterjee B, Jayawardena A, Heller E, Snyder DW, Dhar S, Choi S. Thermal characterization of gallium oxide Schottky barrier diodes. Rev Sci Instrum. 2018;89(11):114903. https://doi.org/10.1063/1.5053621.

    Article  CAS  Google Scholar 

  24. de Freitas LR, da Silva EC, Mansanares AM, Tessier G, Fournier D. Sensitivity enhancement in thermoreflectance microscopy of semiconductor devices using suitable probe wavelengths. J Appl Phys. 2005;98(6):063508. https://doi.org/10.1063/1.2043231.

    Article  CAS  Google Scholar 

  25. Voigt P, Hartmann J, Reichling M. Thermal wave imaging of electrically heated microstructures. J Appl Phys. 1996;80(4):2013. https://doi.org/10.1063/1.363094.

    Article  CAS  Google Scholar 

  26. Vermeersch B, Bahk J, Christofferson J, Shakouri A. Thermoreflectance imaging of sub 100 ns pulsed cooling in high-speed thermoelectric microcoolers. J Appl Phys. 2013;113(10):104502. https://doi.org/10.1063/1.4794166.

    Article  CAS  Google Scholar 

  27. Batista JA, Mansanares AM, Da Silva EC, Vaz CC, Miranda LCM. Contrast enhancement in the detection of defects in transparent layered structures: the use of optothermal interference technique in solar cell investigation. J Appl Phys. 2000;88(9):5079. https://doi.org/10.1063/1.1312849.

    Article  CAS  Google Scholar 

  28. Martin-Horcajo S, Pomeroy JW, Lambert B, Jung H, Blanck H, Kuball M. Transient thermoreflectance for gate temperature assessment in pulse operated GaN-based HEMTs. IEEE Electron Device Lett. 2016;37(9):1197. https://doi.org/10.1109/LED.2016.2595400.

    Article  CAS  Google Scholar 

  29. Pierścińska D. Thermoreflectance spectroscopy-analysis of thermal processes in semiconductor lasers. J Phys D Appl Phys. 2017;51(1):13001. https://doi.org/10.1088/1361-6463/aa9812.

    Article  CAS  Google Scholar 

  30. Wang ZD, Lai ZQ. Preparation and characterization of single (200)-oriented TiN thin films deposited by DC magnetron reactive sputtering. Rare Met. 2022;41(4):1380. https://doi.org/10.1007/s12598-015-0517-2.

  31. Mayer PM, Lüerßen D, Ram RJ, Hudgings JA. Theoretical and experimental investigation of the thermal resolution and dynamic range of CCD-based thermoreflectance imaging. J Opt Soc Am A. 2007;24(4):1156. https://doi.org/10.1364/JOSAA.24.001156.

    Article  Google Scholar 

  32. Favaloro T, Bahk JH, Shakouri A. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. Rev Sci Instrum. 2015;86(2):024903. https://doi.org/10.1063/1.4907354.

    Article  CAS  Google Scholar 

  33. Yang G, Cao B. Three-sensor 3ω–2ω method for the simultaneous measurement of thermal conductivity and thermal boundary resistance in film-on-substrate heterostructures. J Appl Phys. 2023;133(4):045104. https://doi.org/10.1063/5.0120284.

    Article  CAS  Google Scholar 

  34. Yuan C, Pomeroy JW, Kuball M. Above bandgap thermoreflectance for non-invasive thermal characterization of GaN-based wafers. Appl Phys Lett. 2018;113(10):102101. https://doi.org/10.1063/1.5040100.

    Article  CAS  Google Scholar 

  35. Razavi M, Muzychka YS, Kocabiyik S. Review of advances in thermal spreading resistance problems. J Thermophys Heat Transf. 2016;30(4):863. https://doi.org/10.2514/1.T4801.

    Article  CAS  Google Scholar 

  36. Hua YC, Li HL, Cao BY. Thermal spreading resistance in ballistic-diffusive regime for GaN HEMTs. IEEE Trans Electron Devices. 2019;66(8):3296. https://doi.org/10.1109/TED.2019.2922221.

    Article  CAS  Google Scholar 

  37. Li HL, Hua YC, Cao BY. A hybrid phonon Monte Carlo-diffusion method for ballistic-diffusive heat conduction in nano- and micro- structures. Int J Heat Mass Transf. 2018;127:1014. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.080.

    Article  Google Scholar 

  38. Li HL, Shen Y, Hua YC, Sobolev SL, Cao BY. Hybrid Monte Carlo-diffusion studies of modeling self-heating in ballistic-diffusive regime for gallium nitride HEMTs. J Electron Packag. 2022;145(1):011203. https://doi.org/10.1115/1.4054698.

    Article  CAS  Google Scholar 

  39. Hua YC, Cao BY. Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations. Int J Heat Mass Transf. 2014;78:755. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.037.

    Article  CAS  Google Scholar 

  40. Aktas O, Aluru NR. A combined continuum/DSMC technique for multiscale analysis of microfluidic filters. Journal of Comput Phys. 2002;178(2):342. https://doi.org/10.1006/jcph.2002.7030.

    Article  CAS  Google Scholar 

  41. Chatterjee B, Dundar C, Beechem TE, Heller E, Kendig D, Kim H, Donmezer N, Choi S. Nanoscale electro-thermal interactions in AlGaN/GaN high electron mobility transistors. J Appl Phys. 2020;127(4):044502. https://doi.org/10.1063/1.5123726.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52327809, 51825601 and U20A20301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Yang Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZK., Shen, Y., Li, HL. et al. Observation of ballistic-diffusive thermal transport in GaN transistors using thermoreflectance thermal imaging. Rare Met. 43, 389–394 (2024). https://doi.org/10.1007/s12598-023-02355-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02355-4

Navigation