Skip to main content

Advertisement

Log in

A flexible electrochemical sensor for paracetamol based on porous honeycomb-like NiCo-MOF nanosheets

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

The overdose of 4-aminophenol (AP) threatens human health, and the determination of AP is crucial. Here, we report a flexible electrochemical sensor for highly sensitive and precise determination of AP. The ultrathin honeycomb-like NiCo-MOF nanosheets were in situ grown on free-standing flexible carbon cloth (CC) electrode. The porous structure among nanosheets and rich porosity of NiCo-MOF shorten the transport path of electrolyte ions and reactants, ensuring fast electron transport. The large specific surface area (62.14 m2·g−1) provides much active site, and NiCo-MOF exhibits high catalytic activity toward AP. The proposed NiCo-MOF/CC-based sensor showed a wide linear range from 5.0 to 400 μmol·L−1 with a detection limit of 1.0 μmol·L−1. The selectivity, reproducibility and stability were also verified to be satisfactory. In addition, it can detect AP in real pills. The developed flexible sensor endows its promising potential in fabrication of wearable devices.

Graphical abstract

摘要

4-氨基酚(AP)的过量使用严重威胁人体健康,对其的测定至关重要。在此,我们报道了一种用于高灵敏和精确测定AP的柔性电化学传感器。在自支撑柔性碳布(CC)电极上原位生长了超薄蜂窝状NiCo-MOF纳米片。NiCo-MOF丰富的孔隙度和纳米片之间的多孔结构缩短了电解质离子和反应物的传输路径,保证了快速的电子传递。NiCo-MOF的大比表面积(62.14 m2∙g−1)提供了大量的活性位点,对AP具有较高的催化活性。该传感器可检测较宽浓度范围的AP(5.0 ~ 400 μmol·L-1),检出限为1.0 μmol·L-1。该方法的选择性、重复性和稳定性结果均获得了满意的结果。此外,它还可以检测真正的药片中的AP。研制的柔性传感器在可穿戴设备制造中具有广阔的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Chou R, Deyo R, Friedly J, Skelly A, Weimer M, Fu R, Dana T, Kraegel P, Griffin J, Grusing S. Systemic pharmacologic therapies for low back pain: a systematic review for an American college of physicians clinical practice guideline. Ann Intern Med. 2017;166(7):480. https://doi.org/10.7326/m16-2458.

    Article  Google Scholar 

  2. Du K, Ramachandran A, Jaeschke H. Oxidative stress during acetaminophen hepatotoxicity: sources, pathophysiological role and therapeutic potential. Redox Biol. 2016;10:148. https://doi.org/10.1016/j.redox.2016.10.001.

    Article  CAS  Google Scholar 

  3. Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A, Puengel T, Heymann F, Kalthoff S, Lefebvre E, Eulberg D, Luedde T, Marx G, Strassburg CP, Roskams T, Trautwein C, Tacke F. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 2016;64(5):1667. https://doi.org/10.1002/hep.28682.

    Article  CAS  Google Scholar 

  4. Jian NG, Li RX, Li J, Liang SH, Xu Q, Wang CM. Simple, efficient, and eco-friendly sample preparation for simultaneous determination of paracetamol and chloramphenicol in meat. J Sep Sci. 2019;42(16):2696. https://doi.org/10.1002/jssc.201900224.

    Article  CAS  Google Scholar 

  5. Vanova J, Malinak D, Andrys R, Kubat M, Mikysek T, Rousarova E, Musilek K, Rousar T, Cesla P. Optimization of gradient reversed phase high performance liquid chromatography analysis of acetaminophen oxidation metabolites using linear and non-linear retention model. J Chromatogr A. 2022;1669:462956. https://doi.org/10.1016/j.chroma.2022.462956.

    Article  CAS  Google Scholar 

  6. Li M, Ding CP, Jia PD, Guo LH, Wang S, Guo ZY, Su FM, Huang YJ. Semi-quantitative detection of p-Aminophenol in real samples with colorfully naked-eye assay. Sens Actuators B Chem. 2021;334:129604. https://doi.org/10.1016/j.snb.2021.129604.

    Article  CAS  Google Scholar 

  7. Emdadi S, Sorouraddin MH, Denanny L. Enhanced chemiluminescence determination of paracetamol. Analyst. 2021;146(4):1326. https://doi.org/10.1039/D0AN01557A.

    Article  CAS  Google Scholar 

  8. Liu XT, Na WD, Liu H, Su XG. Fluorescence turn-off-on probe based on polypyrrole/graphene quantum composites for selective and sensitive detection of paracetamol and ascorbic acid. Biosens Bioelectron. 2017;98:222. https://doi.org/10.1016/j.bios.2017.06.044.

    Article  CAS  Google Scholar 

  9. Montaseri H, Forbes PBC. Analytical techniques for the determination of acetaminophen: a review. Trends Anal Chem. 2018;108:122. https://doi.org/10.1016/j.trac.2018.08.023.

    Article  CAS  Google Scholar 

  10. Sripirom J, Sim WC, Khunkaewla P, Suginta W, Schulte A. Simple and economical analytical voltammetry in 15 μL volumes: paracetamol voltammetry in blood serum as a working example. Anal Chem. 2018;90(17):10105. https://doi.org/10.1021/acs.analchem.8b01135.

    Article  CAS  Google Scholar 

  11. Sanger K, Durucan O, Wu K, Thilsted AH, Heiskanen A, Rindzevicius T, Schmidt MS, Zór K, Boisen A. Large-scale, lithography-free production of transparent nanostructured surface for dual-functional electrochemical and SERS sensing. ACS Sens. 2017;2(12):1869. https://doi.org/10.1021/acssensors.7b00783.

    Article  CAS  Google Scholar 

  12. Qian LT, Elmahdy R, Raj Thiruppathi A, Chen A. An ultrasensitive electrochemical sensor for the detection of acetaminophen via a three-dimensional hierarchical nanoporous gold wire electrode. Analyst. 2021;146(14):4525. https://doi.org/10.1039/D1AN00755F.

    Article  CAS  Google Scholar 

  13. Kumar KK, Devendiran M, Kumar PS, Babu RS, Narayanan SS. Green synthesis of curcumin-silver nanoparticle and its modified electrode assisted amperometric sensor for the determination of paracetamol. Chemosphere. 2022;303:134994. https://doi.org/10.1016/j.chemosphere.2022.134994.

    Article  CAS  Google Scholar 

  14. Veera Manohara Reddy Y, Bathinapatla S, Łuczak T, Osińska M, Maseed H, Ragavendra P, Subramanyam Sarma L, Srikanth VVSS, Madhavi G. An ultra-sensitive electrochemical sensor for the detection of acetaminophen in the presence of etilefrine using bimetallic Pd–Ag/reduced graphene oxide nanocomposites. New J Chem. 2018;42(4):3137. https://doi.org/10.1039/C7NJ04775D.

    Article  CAS  Google Scholar 

  15. Kader Mohiuddin A, Shamsuddin Ahmed M, Jeon S. Palladium doped α-MnO2 nanorods on graphene as an electrochemical sensor for simultaneous determination of dopamine and paracetamol. Appl Surf Sci. 2022;578:152090. https://doi.org/10.1016/j.apsusc.2021.152090.

    Article  CAS  Google Scholar 

  16. Yang H, Cao GX, Huang YJ, Lin Y, Zheng FY, Lin LX, Liu FJ, Li SX. Nitrogen-doped carbon@TiO2 double-shelled hollow spheres as an electrochemical sensor for simultaneous determination of dopamine and paracetamol in human serum and saliva. J Pharm Anal. 2022;12(3):436. https://doi.org/10.1016/j.jpha.2021.08.005.

    Article  Google Scholar 

  17. Sadeghi M, Shabani-Nooshabadi M. Use of a nano-porous gold film electrode modified with chitosan/polypyrrole for electrochemical determination of metronidazole in the Presence of Acetaminophen. Chemosphere. 2022;307:135722. https://doi.org/10.1016/j.chemosphere.2022.135722.

    Article  CAS  Google Scholar 

  18. Xu S, Zhao W, Lin GY, Wu B, Xu MY, Huang XW, Luo J, Zhu Y, Liu XY. Long conducting and water-compatible polymer/carbon nanotubes nanocomposite with “beads-on-a-string” structure as a highly effective electrochemical sensing material. ACS Sustain Chem Eng. 2019;7(3):3556. https://doi.org/10.1021/acssuschemeng.8b05891.

    Article  CAS  Google Scholar 

  19. Zhao P, Ni MJ, Chen C, Zhou ZD, Li XP, Li CY, Xie YX, Fei JJ. Stimuli-enabled switch-like paracetamol electrochemical sensor based on thermosensitive polymer and MWCNTs-GQDs composite nanomaterial. Nanoscale. 2019;11(15):7394. https://doi.org/10.1039/C8NR09434A.

    Article  CAS  Google Scholar 

  20. Tan K, Ma Q, Luo J, Xu S, Zhu Y, Wei W, Liu XY, Gu Y. Water-dispersible molecularly imprinted nanohybrids via co-assembly of carbon nanotubes with amphiphilic copolymer and photocrosslinking for highly sensitive and selective paracetamol detection. Biosens Bioelectron. 2018;117:713. https://doi.org/10.1016/j.bios.2018.07.009.

    Article  CAS  Google Scholar 

  21. Xiang SY, Mao SD, Chen F, Zhao SC, Su WT, Fu L, Zare N, Karimi F. A bibliometric analysis of graphene in acetaminophen detection: current status, development, and future directions. Chemosphere. 2022;306:135517. https://doi.org/10.1016/j.chemosphere.2022.135517.

    Article  CAS  Google Scholar 

  22. Kang XH, Wang J, Wu H, Liu J, Aksay IA, Lin YH. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta. 2010;81(3):754. https://doi.org/10.1016/j.talanta.2010.01.009.

    Article  CAS  Google Scholar 

  23. Tseng TW, Chen TW, Chen SM, Kokulnathan T, Ahmed F, Hasan PMZ, Bilgrami AL, Kumar S. Construction of strontium phosphate/graphitic-carbon nitride: a flexible and disposable strip for acetaminophen detection. J Hazard Mater. 2021;410:124542. https://doi.org/10.1016/j.jhazmat.2020.124542.

    Article  CAS  Google Scholar 

  24. Tang J, Hui ZZ, Hu T, Cheng X, Guo JH, Li ZR, Yu H. A sensitive acetaminophen sensor based on Co metal–organic framework (ZIF-67) and macroporous carbon composite. Rare Met. 2022;41(1):189. https://doi.org/10.1007/s12598-021-01709-0.

    Article  CAS  Google Scholar 

  25. Wang LY, Yang YX, Liang HH, Wu N, Peng X, Wang L, Song YH. A novel N, S-rich COF and its derived hollow N, S-doped carbon@Pd nanorods for electrochemical detection of Hg2+ and paracetamol. J Hazard Mater. 2021;409:124528. https://doi.org/10.1016/j.jhazmat.2020.124528.

    Article  CAS  Google Scholar 

  26. Murugan E, Kumar K. Fabrication of SnS/TiO2@GO composite coated glassy carbon electrode for concomitant determination of paracetamol, tryptophan, and caffeine in pharmaceutical formulations. Anal Chem. 2019;91(9):5667. https://doi.org/10.1021/acs.analchem.8b05531.

    Article  CAS  Google Scholar 

  27. Bayram E, Akyilmaz E. Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. Sens Actuators B Chem. 2016;233:409. https://doi.org/10.1016/j.snb.2016.04.029.

    Article  CAS  Google Scholar 

  28. Ma YY, Wei ZY, Wang Y, Ding YH, Jiang LP, Fu X, Zhang Y, Sun J, Zhu WX, Wang JL. Surface oxygen functionalization of carbon cloth toward enhanced electrochemical dopamine sensing. ACS Sustain Chem Eng. 2021;9(48):16063. https://doi.org/10.1021/acssuschemeng.1c03430.

    Article  CAS  Google Scholar 

  29. Chen ZJ, Kirlikovali KO, Li P, Farha OK. Reticular chemistry for highly porous metal–organic frameworks: the chemistry and applications. Acc Chem Res. 2022;55(4):579. https://doi.org/10.1021/acs.accounts.1c00707.

    Article  CAS  Google Scholar 

  30. Chen TD, Hao ZT, Wang HY, Li J, Zhao P, Huang WH. Preparation and performance research of Ag@Co-based metal organic polymer composites and their non-enzymatic glucose sensors. Chin J Rare Met. 2022;46(01):36. https://doi.org/10.13373/j.cnki.cjrm.XY21100014

    Google Scholar 

  31. Guo JW, Yang ZW, Liu XL, Zhang LW, Guo WB, Zhang J, Ding LH. 2D Co metal–organic framework nanosheet as an oxidase-like nanozyme for sensitive biomolecule monitoring. Rare Met. 2023;42(3):797–805. https://doi.org/10.1007/s12598-022-02179-8.

    Article  CAS  Google Scholar 

  32. Lin RB, Zhang Z, Chen BL. Achieving high performance metal–organic framework materials through pore engineering. Acc Chem Res. 2021;54(17):3362. https://doi.org/10.1021/acs.accounts.1c00328.

    Article  CAS  Google Scholar 

  33. Zheng LX, Song JL, Ye XY, Wang YZ, Shi XW, Zheng HJ. Construction of self-supported hierarchical NiCo-S nanosheet arrays for supercapacitors with ultrahigh specific capacitance. Nanoscale. 2020;12(25):13811. https://doi.org/10.1039/d0nr02976a.

    Article  CAS  Google Scholar 

  34. Wang T, Zhang SL, Yan XB, Lyu MQ, Wang LZ, Bell J, Wang HX. 2-Methylimidazole-derived Ni–Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors. ACS Appl Mater Interfaces. 2017;9(18):15510. https://doi.org/10.1021/acsami.7b02987.

    Article  CAS  Google Scholar 

  35. Li JL, Jiao L, Xu WQ, Yan HY, Chen GJ, Wu Y, Hu LY, Gu WL. Cobalt oxyhydroxide nanosheets integrating with metal indicator enable sensitive detection of glutathione. Sens Actuators B Chem. 2021;329:129247. https://doi.org/10.1016/j.snb.2020.129247.

    Article  CAS  Google Scholar 

  36. Guo JW, Liu XL, Wang AZ, Yu X, Ding LH. Antifouling electrochemical sensor-based on mesoporous silica film for imidacloprid detection in Traditional Chinese medicine. Microchem J. 2022;183:10796. https://doi.org/10.1016/j.microc.2022.107964.

    Article  CAS  Google Scholar 

  37. Chen Y, Zheng G, Shi QF, Zhao RF, Chen M. Preparation of thiolated calix[8]arene/AuNPs/MWCNTs modified glassy carbon electrode and its electrocatalytic oxidation toward paracetamol. Sens Actuators B Chem. 2018;277:289. https://doi.org/10.1016/j.snb.2018.09.012.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51802118, 52272212 and 11904131), the Natural Science Foundation of Shandong Province (Nos. ZR2022JQ20 and ZR2021YQ04), the Taishan Scholar Project of Shandong Province (No. tsqn202211168) and the Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE (No. M2022-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Hua Ding.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XL., Guo, JW., Wang, YW. et al. A flexible electrochemical sensor for paracetamol based on porous honeycomb-like NiCo-MOF nanosheets. Rare Met. 42, 3311–3317 (2023). https://doi.org/10.1007/s12598-023-02349-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02349-2

Navigation